Izračunaj
9
Dijeliti
Kopirano u međuspremnik
\int _{1}^{2}6x-12x^{2}-14+28x\mathrm{d}x
Primijenite svojstvo distributivnosti množenjem svakog dijela izraza 3x-7 sa svakim dijelom izraza 2-4x.
\int _{1}^{2}34x-12x^{2}-14\mathrm{d}x
Kombinirajte 6x i 28x da biste dobili 34x.
\int 34x-12x^{2}-14\mathrm{d}x
Prvo procijenite beskonačni integral.
\int 34x\mathrm{d}x+\int -12x^{2}\mathrm{d}x+\int -14\mathrm{d}x
Integrirajte zbroj termina po terminu.
34\int x\mathrm{d}x-12\int x^{2}\mathrm{d}x+\int -14\mathrm{d}x
Izbacite konstantu u svakom od izraza.
17x^{2}-12\int x^{2}\mathrm{d}x+\int -14\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x\mathrm{d}x s \frac{x^{2}}{2}. Pomnožite 34 i \frac{x^{2}}{2}.
17x^{2}-4x^{3}+\int -14\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{2}\mathrm{d}x s \frac{x^{3}}{3}. Pomnožite -12 i \frac{x^{3}}{3}.
17x^{2}-4x^{3}-14x
Pronađite integral -14 pomoću tablice uobičajene integrali pravila \int a\mathrm{d}x=ax.
17\times 2^{2}-4\times 2^{3}-14\times 2-\left(17\times 1^{2}-4\times 1^{3}-14\right)
Konačni integral je antiderivat izraza izračunatog u gornjoj granici integracije minus antiderivat izračunat u donjoj granici integracije.
9
Pojednostavnite.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}