Izračunaj
-\ln(|x|)+\frac{2x^{3}}{3}+\frac{3x^{2}}{2}+С
Diferenciraj u odnosu na x
\frac{\left(2x-1\right)\left(x+1\right)^{2}}{x}
Dijeliti
Kopirano u međuspremnik
\int 2x^{2}\mathrm{d}x+\int 3x\mathrm{d}x+\int -\frac{1}{x}\mathrm{d}x
Integrirajte zbroj termina po terminu.
2\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x-\int \frac{1}{x}\mathrm{d}x
Izbacite konstantu u svakom od izraza.
\frac{2x^{3}}{3}+3\int x\mathrm{d}x-\int \frac{1}{x}\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{2}\mathrm{d}x s \frac{x^{3}}{3}. Pomnožite 2 i \frac{x^{3}}{3}.
\frac{2x^{3}}{3}+\frac{3x^{2}}{2}-\int \frac{1}{x}\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x\mathrm{d}x s \frac{x^{2}}{2}. Pomnožite 3 i \frac{x^{2}}{2}.
\frac{2x^{3}}{3}+\frac{3x^{2}}{2}-\ln(|x|)
Koristite \int \frac{1}{x}\mathrm{d}x=\ln(|x|) iz tablice uobičajenih integrali da biste dobili rezultat.
\frac{2x^{3}}{3}+\frac{3x^{2}}{2}-\ln(|x|)+С
Ako je F\left(x\right) antiderivat f\left(x\right), skup svih antiderivata f\left(x\right) je dan u F\left(x\right)+C. Stoga dodajte konstantu integracije C\in \mathrm{R} rezultatu.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}