Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Diferenciraj u odnosu na x
Tick mark Image

Slični problemi iz pretraživanja weba

Dijeliti

\int 8\left(x^{2}\right)^{3}+36\left(x^{2}\right)^{2}+54x^{2}+27\mathrm{d}x
Upotrijebite binomni teorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} da biste proširili \left(2x^{2}+3\right)^{3}.
\int 8x^{6}+36\left(x^{2}\right)^{2}+54x^{2}+27\mathrm{d}x
Da biste izračunali potenciju potencije, pomnožite eksponente. Pomnožite 2 i 3 da biste dobili 6.
\int 8x^{6}+36x^{4}+54x^{2}+27\mathrm{d}x
Da biste izračunali potenciju potencije, pomnožite eksponente. Pomnožite 2 i 2 da biste dobili 4.
\int 8x^{6}\mathrm{d}x+\int 36x^{4}\mathrm{d}x+\int 54x^{2}\mathrm{d}x+\int 27\mathrm{d}x
Integrirajte zbroj termina po terminu.
8\int x^{6}\mathrm{d}x+36\int x^{4}\mathrm{d}x+54\int x^{2}\mathrm{d}x+\int 27\mathrm{d}x
Izbacite konstantu u svakom od izraza.
\frac{8x^{7}}{7}+36\int x^{4}\mathrm{d}x+54\int x^{2}\mathrm{d}x+\int 27\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{6}\mathrm{d}x s \frac{x^{7}}{7}. Pomnožite 8 i \frac{x^{7}}{7}.
\frac{8x^{7}}{7}+\frac{36x^{5}}{5}+54\int x^{2}\mathrm{d}x+\int 27\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{4}\mathrm{d}x s \frac{x^{5}}{5}. Pomnožite 36 i \frac{x^{5}}{5}.
\frac{8x^{7}}{7}+\frac{36x^{5}}{5}+18x^{3}+\int 27\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{2}\mathrm{d}x s \frac{x^{3}}{3}. Pomnožite 54 i \frac{x^{3}}{3}.
\frac{8x^{7}}{7}+\frac{36x^{5}}{5}+18x^{3}+27x
Pronađite integral 27 pomoću tablice uobičajene integrali pravila \int a\mathrm{d}x=ax.
27x+18x^{3}+\frac{36x^{5}}{5}+\frac{8x^{7}}{7}
Pojednostavnite.
27x+18x^{3}+\frac{36x^{5}}{5}+\frac{8x^{7}}{7}+С
Ako je F\left(x\right) antiderivat f\left(x\right), skup svih antiderivata f\left(x\right) je dan u F\left(x\right)+C. Stoga dodajte konstantu integracije C\in \mathrm{R} rezultatu.