Izračunaj
\tan(\arctan(x))\ln(\left(\tan(\arctan(x))\right)^{2}+1)-2\tan(\arctan(x))+2\arctan(x)+С
Diferenciraj u odnosu na x
\frac{\ln(\left(\tan(\arctan(x))\right)^{2}+1)\left(x\tan(\arctan(x))\right)^{2}\frac{\mathrm{d}}{\mathrm{d}x}(\tan(\arctan(x)))+\left(\tan(\arctan(x))\right)^{2}\ln(\left(\tan(\arctan(x))\right)^{2}+1)\frac{\mathrm{d}}{\mathrm{d}x}(\tan(\arctan(x)))+x^{2}\ln(\left(\tan(\arctan(x))\right)^{2}+1)\frac{\mathrm{d}}{\mathrm{d}x}(\tan(\arctan(x)))+\ln(\left(\tan(\arctan(x))\right)^{2}+1)\frac{\mathrm{d}}{\mathrm{d}x}(\tan(\arctan(x)))-2x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(\tan(\arctan(x)))-2\frac{\mathrm{d}}{\mathrm{d}x}(\tan(\arctan(x)))+2\left(\tan(\arctan(x))\right)^{2}+2}{\left(x^{2}+1\right)\left(\left(\tan(\arctan(x))\right)^{2}+1\right)}
Dijeliti
Kopirano u međuspremnik
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}