Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Diferenciraj u odnosu na x
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva x+2 i x-3 jest \left(x-3\right)\left(x+2\right). Pomnožite \frac{2}{x+2} i \frac{x-3}{x-3}. Pomnožite \frac{7}{x-3} i \frac{x+2}{x+2}.
\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
Budući da \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} i \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)}
Pomnožite izraz 2\left(x-3\right)-7\left(x+2\right).
\frac{-5x-20}{\left(x-3\right)\left(x+2\right)}
Kombinirajte slične izraze u 2x-6-7x-14.
\frac{-5x-20}{x^{2}-x-6}
Proširivanje broja \left(x-3\right)\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva x+2 i x-3 jest \left(x-3\right)\left(x+2\right). Pomnožite \frac{2}{x+2} i \frac{x-3}{x-3}. Pomnožite \frac{7}{x-3} i \frac{x+2}{x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
Budući da \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} i \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)})
Pomnožite izraz 2\left(x-3\right)-7\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{\left(x-3\right)\left(x+2\right)})
Kombinirajte slične izraze u 2x-6-7x-14.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}+2x-3x-6})
Primijenite svojstvo distributivnosti množenjem svakog dijela izraza x-3 sa svakim dijelom izraza x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}-x-6})
Kombinirajte 2x i -3x da biste dobili -x.
\frac{\left(x^{2}-x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{1}-20)-\left(-5x^{1}-20\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-6)}{\left(x^{2}-x^{1}-6\right)^{2}}
Za svake dvije različite funkcije, derivacija kvocijenta dviju funkcija jednaka je nazivniku pomnoženom s derivacijom brojnika minus brojniku pomnoženom s derivacijom nazivnika, sve podijeljeno nazivnikom na kvadrat.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{1-1}-\left(-5x^{1}-20\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Derivacija polinoma zbroj je derivacija njegovih dijelova. Derivacija bilo kojeg konstantnog izraza je 0. Derivacija izraza ax^{n} je nax^{n-1}.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Pojednostavnite.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Pomnožite x^{2}-x^{1}-6 i -5x^{0}.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}\times 2x^{1}-5x^{1}\left(-1\right)x^{0}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Pomnožite -5x^{1}-20 i 2x^{1}-x^{0}.
\frac{-5x^{2}-\left(-5x^{1}\right)-6\left(-5\right)x^{0}-\left(-5\times 2x^{1+1}-5\left(-1\right)x^{1}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Da biste pomnožili potencije s istom bazom, zbrojite njihove eksponente.
\frac{-5x^{2}+5x^{1}+30x^{0}-\left(-10x^{2}+5x^{1}-40x^{1}+20x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Pojednostavnite.
\frac{5x^{2}+40x^{1}+10x^{0}}{\left(x^{2}-x^{1}-6\right)^{2}}
Kombinirajte slične izraze.
\frac{5x^{2}+40x+10x^{0}}{\left(x^{2}-x-6\right)^{2}}
Za svaki izraz t, t^{1}=t.
\frac{5x^{2}+40x+10\times 1}{\left(x^{2}-x-6\right)^{2}}
Za svaki izraz t osim 0, t^{0}=1.
\frac{5x^{2}+40x+10}{\left(x^{2}-x-6\right)^{2}}
Za svaki izraz t, t\times 1=t i 1t=t.