Izračunaj
-\sqrt{3}-2\approx -3,732050808
Dijeliti
Kopirano u međuspremnik
\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}
Racionalizirajte nazivnik \frac{1+\sqrt{3}}{1-\sqrt{3}} množenje brojnik i nazivnik 1+\sqrt{3}.
\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}
Razmotrite \left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right). Umnožak se može pretvoriti u razliku kvadrata pomoću sljedećeg pravila: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{1-3}
Kvadrirajte 1. Kvadrirajte \sqrt{3}.
\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{-2}
Oduzmite 3 od 1 da biste dobili -2.
\frac{\left(1+\sqrt{3}\right)^{2}}{-2}
Pomnožite 1+\sqrt{3} i 1+\sqrt{3} da biste dobili \left(1+\sqrt{3}\right)^{2}.
\frac{1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}}{-2}
Upotrijebite binomni teorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} da biste proširili \left(1+\sqrt{3}\right)^{2}.
\frac{1+2\sqrt{3}+3}{-2}
Kvadrat od \sqrt{3} je 3.
\frac{4+2\sqrt{3}}{-2}
Dodajte 1 broju 3 da biste dobili 4.
-2-\sqrt{3}
Podijelite svaki izraz jednadžbe 4+2\sqrt{3} s -2 da biste dobili -2-\sqrt{3}.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}