Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Proširi
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva x+3 i x+4 jest \left(x+3\right)\left(x+4\right). Pomnožite \frac{x+4}{x+3} i \frac{x+4}{x+4}. Pomnožite \frac{x-3}{x+4} i \frac{x+3}{x+3}.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Budući da \frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} i \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Pomnožite izraz \left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right).
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Kombinirajte slične izraze u x^{2}+4x+4x+16-x^{2}-3x+3x+9.
\frac{\left(8x+25\right)\left(x^{2}+7x+12\right)}{\left(x+3\right)\left(x+4\right)\times 14}
Podijelite \frac{8x+25}{\left(x+3\right)\left(x+4\right)} s \frac{14}{x^{2}+7x+12} tako da pomnožite \frac{8x+25}{\left(x+3\right)\left(x+4\right)} s brojem recipročnim broju \frac{14}{x^{2}+7x+12}.
\frac{\left(x+3\right)\left(x+4\right)\left(8x+25\right)}{14\left(x+3\right)\left(x+4\right)}
Rastavite na faktore izraze koji još nisu rastavljeni na faktore.
\frac{8x+25}{14}
Skratite \left(x+3\right)\left(x+4\right) u brojniku i nazivniku.
\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva x+3 i x+4 jest \left(x+3\right)\left(x+4\right). Pomnožite \frac{x+4}{x+3} i \frac{x+4}{x+4}. Pomnožite \frac{x-3}{x+4} i \frac{x+3}{x+3}.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Budući da \frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} i \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Pomnožite izraz \left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right).
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Kombinirajte slične izraze u x^{2}+4x+4x+16-x^{2}-3x+3x+9.
\frac{\left(8x+25\right)\left(x^{2}+7x+12\right)}{\left(x+3\right)\left(x+4\right)\times 14}
Podijelite \frac{8x+25}{\left(x+3\right)\left(x+4\right)} s \frac{14}{x^{2}+7x+12} tako da pomnožite \frac{8x+25}{\left(x+3\right)\left(x+4\right)} s brojem recipročnim broju \frac{14}{x^{2}+7x+12}.
\frac{\left(x+3\right)\left(x+4\right)\left(8x+25\right)}{14\left(x+3\right)\left(x+4\right)}
Rastavite na faktore izraze koji još nisu rastavljeni na faktore.
\frac{8x+25}{14}
Skratite \left(x+3\right)\left(x+4\right) u brojniku i nazivniku.