Izračunaj
0
Faktor
0
Grafikon
Dijeliti
Kopirano u međuspremnik
\frac{x-1}{\left(x+1\right)\left(x+2\right)}+\frac{6}{\left(x-2\right)\left(-x-1\right)}-\frac{10-x}{4-x^{2}}
Rastavite x^{2}+3x+2 na faktore. Rastavite 2+x-x^{2} na faktore.
\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}+\frac{6\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x+1\right)\left(x+2\right) i \left(x-2\right)\left(-x-1\right) jest \left(x-2\right)\left(x+1\right)\left(x+2\right). Pomnožite \frac{x-1}{\left(x+1\right)\left(x+2\right)} i \frac{x-2}{x-2}. Pomnožite \frac{6}{\left(x-2\right)\left(-x-1\right)} i \frac{-\left(x+2\right)}{-\left(x+2\right)}.
\frac{\left(x-1\right)\left(x-2\right)+6\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Budući da \frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} i \frac{6\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{x^{2}-2x-x+2-6x-12}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Pomnožite izraz \left(x-1\right)\left(x-2\right)+6\left(-1\right)\left(x+2\right).
\frac{x^{2}-9x-10}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Kombinirajte slične izraze u x^{2}-2x-x+2-6x-12.
\frac{\left(x-10\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Rastavite na faktore izraze koji još nisu rastavljeni na faktore u izrazu \frac{x^{2}-9x-10}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}.
\frac{x-10}{\left(x-2\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Skratite x+1 u brojniku i nazivniku.
\frac{x-10}{\left(x-2\right)\left(x+2\right)}-\frac{10-x}{\left(x-2\right)\left(-x-2\right)}
Rastavite 4-x^{2} na faktore.
\frac{x-10}{\left(x-2\right)\left(x+2\right)}-\frac{-\left(10-x\right)}{\left(x-2\right)\left(x+2\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-2\right)\left(x+2\right) i \left(x-2\right)\left(-x-2\right) jest \left(x-2\right)\left(x+2\right). Pomnožite \frac{10-x}{\left(x-2\right)\left(-x-2\right)} i \frac{-1}{-1}.
\frac{x-10-\left(-\left(10-x\right)\right)}{\left(x-2\right)\left(x+2\right)}
Budući da \frac{x-10}{\left(x-2\right)\left(x+2\right)} i \frac{-\left(10-x\right)}{\left(x-2\right)\left(x+2\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{x-10+10-x}{\left(x-2\right)\left(x+2\right)}
Pomnožite izraz x-10-\left(-\left(10-x\right)\right).
\frac{0}{\left(x-2\right)\left(x+2\right)}
Kombinirajte slične izraze u x-10+10-x.
0
Nula podijeljena s bilo kojim izrazom koji nije nula daje nulu.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}