Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Faktor
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

\frac{x-1}{\left(x+1\right)\left(x+2\right)}+\frac{6}{\left(x-2\right)\left(-x-1\right)}-\frac{10-x}{4-x^{2}}
Rastavite x^{2}+3x+2 na faktore. Rastavite 2+x-x^{2} na faktore.
\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}+\frac{6\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x+1\right)\left(x+2\right) i \left(x-2\right)\left(-x-1\right) jest \left(x-2\right)\left(x+1\right)\left(x+2\right). Pomnožite \frac{x-1}{\left(x+1\right)\left(x+2\right)} i \frac{x-2}{x-2}. Pomnožite \frac{6}{\left(x-2\right)\left(-x-1\right)} i \frac{-\left(x+2\right)}{-\left(x+2\right)}.
\frac{\left(x-1\right)\left(x-2\right)+6\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Budući da \frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} i \frac{6\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{x^{2}-2x-x+2-6x-12}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Pomnožite izraz \left(x-1\right)\left(x-2\right)+6\left(-1\right)\left(x+2\right).
\frac{x^{2}-9x-10}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Kombinirajte slične izraze u x^{2}-2x-x+2-6x-12.
\frac{\left(x-10\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Rastavite na faktore izraze koji još nisu rastavljeni na faktore u izrazu \frac{x^{2}-9x-10}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}.
\frac{x-10}{\left(x-2\right)\left(x+2\right)}-\frac{10-x}{4-x^{2}}
Skratite x+1 u brojniku i nazivniku.
\frac{x-10}{\left(x-2\right)\left(x+2\right)}-\frac{10-x}{\left(x-2\right)\left(-x-2\right)}
Rastavite 4-x^{2} na faktore.
\frac{x-10}{\left(x-2\right)\left(x+2\right)}-\frac{-\left(10-x\right)}{\left(x-2\right)\left(x+2\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-2\right)\left(x+2\right) i \left(x-2\right)\left(-x-2\right) jest \left(x-2\right)\left(x+2\right). Pomnožite \frac{10-x}{\left(x-2\right)\left(-x-2\right)} i \frac{-1}{-1}.
\frac{x-10-\left(-\left(10-x\right)\right)}{\left(x-2\right)\left(x+2\right)}
Budući da \frac{x-10}{\left(x-2\right)\left(x+2\right)} i \frac{-\left(10-x\right)}{\left(x-2\right)\left(x+2\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{x-10+10-x}{\left(x-2\right)\left(x+2\right)}
Pomnožite izraz x-10-\left(-\left(10-x\right)\right).
\frac{0}{\left(x-2\right)\left(x+2\right)}
Kombinirajte slične izraze u x-10+10-x.
0
Nula podijeljena s bilo kojim izrazom koji nije nula daje nulu.