Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Proširi
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

\frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)}+\frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)}
Rastavite x^{2}-25 na faktore. Rastavite x^{2}+11x+30 na faktore.
\frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}+\frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-5\right)\left(x+5\right) i \left(x+5\right)\left(x+6\right) jest \left(x-5\right)\left(x+5\right)\left(x+6\right). Pomnožite \frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)} i \frac{x+6}{x+6}. Pomnožite \frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)} i \frac{x-5}{x-5}.
\frac{\left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Budući da \frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)} i \frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Pomnožite izraz \left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right).
\frac{2x^{3}+2x^{2}+5x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Kombinirajte slične izraze u x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5.
\frac{2x^{3}+2x^{2}+5x+5}{x^{3}+6x^{2}-25x-150}
Proširivanje broja \left(x-5\right)\left(x+5\right)\left(x+6\right).
\frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)}+\frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)}
Rastavite x^{2}-25 na faktore. Rastavite x^{2}+11x+30 na faktore.
\frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}+\frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-5\right)\left(x+5\right) i \left(x+5\right)\left(x+6\right) jest \left(x-5\right)\left(x+5\right)\left(x+6\right). Pomnožite \frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)} i \frac{x+6}{x+6}. Pomnožite \frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)} i \frac{x-5}{x-5}.
\frac{\left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Budući da \frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)} i \frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Pomnožite izraz \left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right).
\frac{2x^{3}+2x^{2}+5x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Kombinirajte slične izraze u x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5.
\frac{2x^{3}+2x^{2}+5x+5}{x^{3}+6x^{2}-25x-150}
Proširivanje broja \left(x-5\right)\left(x+5\right)\left(x+6\right).