Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Proširi
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

\frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva x+1 i x+2 jest \left(x+1\right)\left(x+2\right). Pomnožite \frac{x+2}{x+1} i \frac{x+2}{x+2}. Pomnožite \frac{x+1}{x+2} i \frac{x+1}{x+1}.
\frac{\left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Budući da \frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} i \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{x^{2}+2x+2x+4+x^{2}+x+x+1}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Pomnožite izraz \left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Kombinirajte slične izraze u x^{2}+2x+2x+4+x^{2}+x+x+1.
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x+1\right)\left(x+2\right) i x+2 jest \left(x+1\right)\left(x+2\right). Pomnožite \frac{x+5}{x+2} i \frac{x+1}{x+1}.
\frac{2x^{2}+6x+5-\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Budući da \frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)} i \frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{2x^{2}+6x+5-x^{2}-x-5x-5}{\left(x+1\right)\left(x+2\right)}
Pomnožite izraz 2x^{2}+6x+5-\left(x+5\right)\left(x+1\right).
\frac{x^{2}}{\left(x+1\right)\left(x+2\right)}
Kombinirajte slične izraze u 2x^{2}+6x+5-x^{2}-x-5x-5.
\frac{x^{2}}{x^{2}+3x+2}
Proširivanje broja \left(x+1\right)\left(x+2\right).
\frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva x+1 i x+2 jest \left(x+1\right)\left(x+2\right). Pomnožite \frac{x+2}{x+1} i \frac{x+2}{x+2}. Pomnožite \frac{x+1}{x+2} i \frac{x+1}{x+1}.
\frac{\left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Budući da \frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} i \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{x^{2}+2x+2x+4+x^{2}+x+x+1}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Pomnožite izraz \left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Kombinirajte slične izraze u x^{2}+2x+2x+4+x^{2}+x+x+1.
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x+1\right)\left(x+2\right) i x+2 jest \left(x+1\right)\left(x+2\right). Pomnožite \frac{x+5}{x+2} i \frac{x+1}{x+1}.
\frac{2x^{2}+6x+5-\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Budući da \frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)} i \frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{2x^{2}+6x+5-x^{2}-x-5x-5}{\left(x+1\right)\left(x+2\right)}
Pomnožite izraz 2x^{2}+6x+5-\left(x+5\right)\left(x+1\right).
\frac{x^{2}}{\left(x+1\right)\left(x+2\right)}
Kombinirajte slične izraze u 2x^{2}+6x+5-x^{2}-x-5x-5.
\frac{x^{2}}{x^{2}+3x+2}
Proširivanje broja \left(x+1\right)\left(x+2\right).