Izračunaj
7\sqrt{3}+13\approx 25,124355653
Dijeliti
Kopirano u međuspremnik
\frac{\left(5+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}
Racionalizirajte nazivnik \frac{5+\sqrt{3}}{2-\sqrt{3}} množenje brojnik i nazivnik 2+\sqrt{3}.
\frac{\left(5+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Razmotrite \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Umnožak se može pretvoriti u razliku kvadrata pomoću sljedećeg pravila: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}
Kvadrirajte 2. Kvadrirajte \sqrt{3}.
\frac{\left(5+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}
Oduzmite 3 od 4 da biste dobili 1.
\left(5+\sqrt{3}\right)\left(2+\sqrt{3}\right)
Sve što se podijeli s jedan, kao rezultat daje sami djeljenik.
10+5\sqrt{3}+2\sqrt{3}+\left(\sqrt{3}\right)^{2}
Primijenite svojstvo distributivnosti množenjem svakog dijela izraza 5+\sqrt{3} sa svakim dijelom izraza 2+\sqrt{3}.
10+7\sqrt{3}+\left(\sqrt{3}\right)^{2}
Kombinirajte 5\sqrt{3} i 2\sqrt{3} da biste dobili 7\sqrt{3}.
10+7\sqrt{3}+3
Kvadrat od \sqrt{3} je 3.
13+7\sqrt{3}
Dodajte 10 broju 3 da biste dobili 13.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}