Izračunaj
\frac{2w^{2}-25w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Proširi
\frac{2w^{2}-25w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Dijeliti
Kopirano u međuspremnik
\frac{4w}{\left(w+2\right)\left(w+7\right)}-\frac{2w+5}{\left(w-4\right)\left(w+7\right)}
Rastavite w^{2}+9w+14 na faktore. Rastavite w^{2}+3w-28 na faktore.
\frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}-\frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(w+2\right)\left(w+7\right) i \left(w-4\right)\left(w+7\right) jest \left(w-4\right)\left(w+2\right)\left(w+7\right). Pomnožite \frac{4w}{\left(w+2\right)\left(w+7\right)} i \frac{w-4}{w-4}. Pomnožite \frac{2w+5}{\left(w-4\right)\left(w+7\right)} i \frac{w+2}{w+2}.
\frac{4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Budući da \frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} i \frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{4w^{2}-16w-2w^{2}-4w-5w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Pomnožite izraz 4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right).
\frac{2w^{2}-25w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Kombinirajte slične izraze u 4w^{2}-16w-2w^{2}-4w-5w-10.
\frac{2w^{2}-25w-10}{w^{3}+5w^{2}-22w-56}
Proširivanje broja \left(w-4\right)\left(w+2\right)\left(w+7\right).
\frac{4w}{\left(w+2\right)\left(w+7\right)}-\frac{2w+5}{\left(w-4\right)\left(w+7\right)}
Rastavite w^{2}+9w+14 na faktore. Rastavite w^{2}+3w-28 na faktore.
\frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}-\frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(w+2\right)\left(w+7\right) i \left(w-4\right)\left(w+7\right) jest \left(w-4\right)\left(w+2\right)\left(w+7\right). Pomnožite \frac{4w}{\left(w+2\right)\left(w+7\right)} i \frac{w-4}{w-4}. Pomnožite \frac{2w+5}{\left(w-4\right)\left(w+7\right)} i \frac{w+2}{w+2}.
\frac{4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Budući da \frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} i \frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{4w^{2}-16w-2w^{2}-4w-5w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Pomnožite izraz 4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right).
\frac{2w^{2}-25w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Kombinirajte slične izraze u 4w^{2}-16w-2w^{2}-4w-5w-10.
\frac{2w^{2}-25w-10}{w^{3}+5w^{2}-22w-56}
Proširivanje broja \left(w-4\right)\left(w+2\right)\left(w+7\right).
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}