Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Proširi
Tick mark Image

Slični problemi iz pretraživanja weba

Dijeliti

\frac{4w}{\left(w+2\right)\left(w+7\right)}-\frac{2w+5}{\left(w-4\right)\left(w+7\right)}
Rastavite w^{2}+9w+14 na faktore. Rastavite w^{2}+3w-28 na faktore.
\frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}-\frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(w+2\right)\left(w+7\right) i \left(w-4\right)\left(w+7\right) jest \left(w-4\right)\left(w+2\right)\left(w+7\right). Pomnožite \frac{4w}{\left(w+2\right)\left(w+7\right)} i \frac{w-4}{w-4}. Pomnožite \frac{2w+5}{\left(w-4\right)\left(w+7\right)} i \frac{w+2}{w+2}.
\frac{4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Budući da \frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} i \frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{4w^{2}-16w-2w^{2}-4w-5w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Pomnožite izraz 4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right).
\frac{2w^{2}-25w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Kombinirajte slične izraze u 4w^{2}-16w-2w^{2}-4w-5w-10.
\frac{2w^{2}-25w-10}{w^{3}+5w^{2}-22w-56}
Proširivanje broja \left(w-4\right)\left(w+2\right)\left(w+7\right).
\frac{4w}{\left(w+2\right)\left(w+7\right)}-\frac{2w+5}{\left(w-4\right)\left(w+7\right)}
Rastavite w^{2}+9w+14 na faktore. Rastavite w^{2}+3w-28 na faktore.
\frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}-\frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(w+2\right)\left(w+7\right) i \left(w-4\right)\left(w+7\right) jest \left(w-4\right)\left(w+2\right)\left(w+7\right). Pomnožite \frac{4w}{\left(w+2\right)\left(w+7\right)} i \frac{w-4}{w-4}. Pomnožite \frac{2w+5}{\left(w-4\right)\left(w+7\right)} i \frac{w+2}{w+2}.
\frac{4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Budući da \frac{4w\left(w-4\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} i \frac{\left(2w+5\right)\left(w+2\right)}{\left(w-4\right)\left(w+2\right)\left(w+7\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{4w^{2}-16w-2w^{2}-4w-5w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Pomnožite izraz 4w\left(w-4\right)-\left(2w+5\right)\left(w+2\right).
\frac{2w^{2}-25w-10}{\left(w-4\right)\left(w+2\right)\left(w+7\right)}
Kombinirajte slične izraze u 4w^{2}-16w-2w^{2}-4w-5w-10.
\frac{2w^{2}-25w-10}{w^{3}+5w^{2}-22w-56}
Proširivanje broja \left(w-4\right)\left(w+2\right)\left(w+7\right).