Izračunaj
\frac{2z^{2}+8z-17}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Proširi
\frac{2z^{2}+8z-17}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Dijeliti
Kopirano u međuspremnik
\frac{2z+3}{\left(z-2\right)\left(z+6\right)}+\frac{7}{\left(z-1\right)\left(z+6\right)}
Rastavite z^{2}+4z-12 na faktore. Rastavite z^{2}+5z-6 na faktore.
\frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}+\frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(z-2\right)\left(z+6\right) i \left(z-1\right)\left(z+6\right) jest \left(z-2\right)\left(z-1\right)\left(z+6\right). Pomnožite \frac{2z+3}{\left(z-2\right)\left(z+6\right)} i \frac{z-1}{z-1}. Pomnožite \frac{7}{\left(z-1\right)\left(z+6\right)} i \frac{z-2}{z-2}.
\frac{\left(2z+3\right)\left(z-1\right)+7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Budući da \frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} i \frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{2z^{2}-2z+3z-3+7z-14}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Pomnožite izraz \left(2z+3\right)\left(z-1\right)+7\left(z-2\right).
\frac{2z^{2}+8z-17}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Kombinirajte slične izraze u 2z^{2}-2z+3z-3+7z-14.
\frac{2z^{2}+8z-17}{z^{3}+3z^{2}-16z+12}
Proširivanje broja \left(z-2\right)\left(z-1\right)\left(z+6\right).
\frac{2z+3}{\left(z-2\right)\left(z+6\right)}+\frac{7}{\left(z-1\right)\left(z+6\right)}
Rastavite z^{2}+4z-12 na faktore. Rastavite z^{2}+5z-6 na faktore.
\frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}+\frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(z-2\right)\left(z+6\right) i \left(z-1\right)\left(z+6\right) jest \left(z-2\right)\left(z-1\right)\left(z+6\right). Pomnožite \frac{2z+3}{\left(z-2\right)\left(z+6\right)} i \frac{z-1}{z-1}. Pomnožite \frac{7}{\left(z-1\right)\left(z+6\right)} i \frac{z-2}{z-2}.
\frac{\left(2z+3\right)\left(z-1\right)+7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Budući da \frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} i \frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{2z^{2}-2z+3z-3+7z-14}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Pomnožite izraz \left(2z+3\right)\left(z-1\right)+7\left(z-2\right).
\frac{2z^{2}+8z-17}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Kombinirajte slične izraze u 2z^{2}-2z+3z-3+7z-14.
\frac{2z^{2}+8z-17}{z^{3}+3z^{2}-16z+12}
Proširivanje broja \left(z-2\right)\left(z-1\right)\left(z+6\right).
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}