Izračunaj
\frac{x^{3}+2x^{2}-4x+6}{x\left(x+2\right)\left(x+3\right)}
Proširi
\frac{x^{3}+2x^{2}-4x+6}{x\left(x+2\right)\left(x+3\right)}
Grafikon
Dijeliti
Kopirano u međuspremnik
\frac{\left(2x-3\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva x+2 i x+3 jest \left(x+2\right)\left(x+3\right). Pomnožite \frac{2x-3}{x+2} i \frac{x+3}{x+3}. Pomnožite \frac{x}{x+3} i \frac{x+2}{x+2}.
\frac{\left(2x-3\right)\left(x+3\right)-x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Budući da \frac{\left(2x-3\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)} i \frac{x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{2x^{2}+6x-3x-9-x^{2}-2x}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Pomnožite izraz \left(2x-3\right)\left(x+3\right)-x\left(x+2\right).
\frac{x^{2}+x-9}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Kombinirajte slične izraze u 2x^{2}+6x-3x-9-x^{2}-2x.
\frac{\left(x^{2}+x-9\right)x}{x\left(x+2\right)\left(x+3\right)}+\frac{\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x+2\right)\left(x+3\right) i x jest x\left(x+2\right)\left(x+3\right). Pomnožite \frac{x^{2}+x-9}{\left(x+2\right)\left(x+3\right)} i \frac{x}{x}. Pomnožite \frac{1}{x} i \frac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}.
\frac{\left(x^{2}+x-9\right)x+\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)}
Budući da \frac{\left(x^{2}+x-9\right)x}{x\left(x+2\right)\left(x+3\right)} i \frac{\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{x^{3}+x^{2}-9x+x^{2}+3x+2x+6}{x\left(x+2\right)\left(x+3\right)}
Pomnožite izraz \left(x^{2}+x-9\right)x+\left(x+2\right)\left(x+3\right).
\frac{x^{3}+2x^{2}-4x+6}{x\left(x+2\right)\left(x+3\right)}
Kombinirajte slične izraze u x^{3}+x^{2}-9x+x^{2}+3x+2x+6.
\frac{x^{3}+2x^{2}-4x+6}{x^{3}+5x^{2}+6x}
Proširivanje broja x\left(x+2\right)\left(x+3\right).
\frac{\left(2x-3\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva x+2 i x+3 jest \left(x+2\right)\left(x+3\right). Pomnožite \frac{2x-3}{x+2} i \frac{x+3}{x+3}. Pomnožite \frac{x}{x+3} i \frac{x+2}{x+2}.
\frac{\left(2x-3\right)\left(x+3\right)-x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Budući da \frac{\left(2x-3\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)} i \frac{x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{2x^{2}+6x-3x-9-x^{2}-2x}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Pomnožite izraz \left(2x-3\right)\left(x+3\right)-x\left(x+2\right).
\frac{x^{2}+x-9}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Kombinirajte slične izraze u 2x^{2}+6x-3x-9-x^{2}-2x.
\frac{\left(x^{2}+x-9\right)x}{x\left(x+2\right)\left(x+3\right)}+\frac{\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x+2\right)\left(x+3\right) i x jest x\left(x+2\right)\left(x+3\right). Pomnožite \frac{x^{2}+x-9}{\left(x+2\right)\left(x+3\right)} i \frac{x}{x}. Pomnožite \frac{1}{x} i \frac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}.
\frac{\left(x^{2}+x-9\right)x+\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)}
Budući da \frac{\left(x^{2}+x-9\right)x}{x\left(x+2\right)\left(x+3\right)} i \frac{\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{x^{3}+x^{2}-9x+x^{2}+3x+2x+6}{x\left(x+2\right)\left(x+3\right)}
Pomnožite izraz \left(x^{2}+x-9\right)x+\left(x+2\right)\left(x+3\right).
\frac{x^{3}+2x^{2}-4x+6}{x\left(x+2\right)\left(x+3\right)}
Kombinirajte slične izraze u x^{3}+x^{2}-9x+x^{2}+3x+2x+6.
\frac{x^{3}+2x^{2}-4x+6}{x^{3}+5x^{2}+6x}
Proširivanje broja x\left(x+2\right)\left(x+3\right).
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}