Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Proširi
Tick mark Image

Slični problemi iz pretraživanja weba

Dijeliti

\frac{\frac{8-5a}{2+7a+6}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Dodajte 2 broju 6 da biste dobili 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Dodajte 2 broju 6 da biste dobili 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite -a-1 i \frac{a+1}{a+1}.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Budući da \frac{2a+10}{a+1} i \frac{\left(-a-1\right)\left(a+1\right)}{a+1} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}
Pomnožite izraz 2a+10+\left(-a-1\right)\left(a+1\right).
\frac{\frac{8-5a}{8+7a}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}
Kombinirajte slične izraze u 2a+10-a^{2}-a-a-1.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(8+7a\right)\left(9-a^{2}\right)}+\frac{1}{a+3}
Podijelite \frac{8-5a}{8+7a} s \frac{9-a^{2}}{a+1} tako da pomnožite \frac{8-5a}{8+7a} s brojem recipročnim broju \frac{9-a^{2}}{a+1}.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)}+\frac{1}{a+3}
Rastavite \left(8+7a\right)\left(9-a^{2}\right) na faktore.
\frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}+\frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(a-3\right)\left(-a-3\right)\left(7a+8\right) i a+3 jest \left(a-3\right)\left(a+3\right)\left(7a+8\right). Pomnožite \frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)} i \frac{-1}{-1}. Pomnožite \frac{1}{a+3} i \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(7a+8\right)}.
\frac{-\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Budući da \frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} i \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{-8a-8+5a^{2}+5a+7a^{2}+8a-21a-24}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Pomnožite izraz -\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right).
\frac{-16a-32+12a^{2}}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Kombinirajte slične izraze u -8a-8+5a^{2}+5a+7a^{2}+8a-21a-24.
\frac{-16a-32+12a^{2}}{7a^{3}+8a^{2}-63a-72}
Proširivanje broja \left(a-3\right)\left(a+3\right)\left(7a+8\right).
\frac{\frac{8-5a}{2+7a+6}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Dodajte 2 broju 6 da biste dobili 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Dodajte 2 broju 6 da biste dobili 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite -a-1 i \frac{a+1}{a+1}.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Budući da \frac{2a+10}{a+1} i \frac{\left(-a-1\right)\left(a+1\right)}{a+1} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}
Pomnožite izraz 2a+10+\left(-a-1\right)\left(a+1\right).
\frac{\frac{8-5a}{8+7a}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}
Kombinirajte slične izraze u 2a+10-a^{2}-a-a-1.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(8+7a\right)\left(9-a^{2}\right)}+\frac{1}{a+3}
Podijelite \frac{8-5a}{8+7a} s \frac{9-a^{2}}{a+1} tako da pomnožite \frac{8-5a}{8+7a} s brojem recipročnim broju \frac{9-a^{2}}{a+1}.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)}+\frac{1}{a+3}
Rastavite \left(8+7a\right)\left(9-a^{2}\right) na faktore.
\frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}+\frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(a-3\right)\left(-a-3\right)\left(7a+8\right) i a+3 jest \left(a-3\right)\left(a+3\right)\left(7a+8\right). Pomnožite \frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)} i \frac{-1}{-1}. Pomnožite \frac{1}{a+3} i \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(7a+8\right)}.
\frac{-\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Budući da \frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} i \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{-8a-8+5a^{2}+5a+7a^{2}+8a-21a-24}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Pomnožite izraz -\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right).
\frac{-16a-32+12a^{2}}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Kombinirajte slične izraze u -8a-8+5a^{2}+5a+7a^{2}+8a-21a-24.
\frac{-16a-32+12a^{2}}{7a^{3}+8a^{2}-63a-72}
Proširivanje broja \left(a-3\right)\left(a+3\right)\left(7a+8\right).