Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Diferenciraj u odnosu na x
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Rastavite x^{2}-5x+6 na faktore. Rastavite x^{2}-3x+2 na faktore.
\frac{x-1}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-3\right)\left(x-2\right) i \left(x-2\right)\left(x-1\right) jest \left(x-3\right)\left(x-2\right)\left(x-1\right). Pomnožite \frac{1}{\left(x-3\right)\left(x-2\right)} i \frac{x-1}{x-1}. Pomnožite \frac{1}{\left(x-2\right)\left(x-1\right)} i \frac{x-3}{x-3}.
\frac{x-1+x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Budući da \frac{x-1}{\left(x-3\right)\left(x-2\right)\left(x-1\right)} i \frac{x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{2x-4}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Kombinirajte slične izraze u x-1+x-3.
\frac{2\left(x-2\right)}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Rastavite na faktore izraze koji još nisu rastavljeni na faktore u izrazu \frac{2x-4}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}.
\frac{2}{\left(x-3\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Skratite x-2 u brojniku i nazivniku.
\frac{2}{\left(x-3\right)\left(x-1\right)}+\frac{2}{\left(x-5\right)\left(x-3\right)}
Rastavite x^{2}-8x+15 na faktore.
\frac{2\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}+\frac{2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-3\right)\left(x-1\right) i \left(x-5\right)\left(x-3\right) jest \left(x-5\right)\left(x-3\right)\left(x-1\right). Pomnožite \frac{2}{\left(x-3\right)\left(x-1\right)} i \frac{x-5}{x-5}. Pomnožite \frac{2}{\left(x-5\right)\left(x-3\right)} i \frac{x-1}{x-1}.
\frac{2\left(x-5\right)+2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Budući da \frac{2\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)} i \frac{2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{2x-10+2x-2}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Pomnožite izraz 2\left(x-5\right)+2\left(x-1\right).
\frac{4x-12}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Kombinirajte slične izraze u 2x-10+2x-2.
\frac{4\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Rastavite na faktore izraze koji još nisu rastavljeni na faktore u izrazu \frac{4x-12}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}.
\frac{4}{\left(x-5\right)\left(x-1\right)}
Skratite x-3 u brojniku i nazivniku.
\frac{4}{x^{2}-6x+5}
Proširivanje broja \left(x-5\right)\left(x-1\right).