Izračunaj
\frac{3}{\left(x+1\right)\left(x+7\right)}
Diferenciraj u odnosu na x
\frac{6\left(-x-4\right)}{\left(\left(x+1\right)\left(x+7\right)\right)^{2}}
Grafikon
Dijeliti
Kopirano u međuspremnik
\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Rastavite x^{2}+4x+3 na faktore. Rastavite x^{2}+8x+15 na faktore.
\frac{x+5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x+1\right)\left(x+3\right) i \left(x+3\right)\left(x+5\right) jest \left(x+1\right)\left(x+3\right)\left(x+5\right). Pomnožite \frac{1}{\left(x+1\right)\left(x+3\right)} i \frac{x+5}{x+5}. Pomnožite \frac{1}{\left(x+3\right)\left(x+5\right)} i \frac{x+1}{x+1}.
\frac{x+5+x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Budući da \frac{x+5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)} i \frac{x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{2x+6}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Kombinirajte slične izraze u x+5+x+1.
\frac{2\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Rastavite na faktore izraze koji još nisu rastavljeni na faktore u izrazu \frac{2x+6}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}.
\frac{2}{\left(x+1\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Skratite x+3 u brojniku i nazivniku.
\frac{2}{\left(x+1\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}
Rastavite x^{2}+12x+35 na faktore.
\frac{2\left(x+7\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}+\frac{x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x+1\right)\left(x+5\right) i \left(x+5\right)\left(x+7\right) jest \left(x+1\right)\left(x+5\right)\left(x+7\right). Pomnožite \frac{2}{\left(x+1\right)\left(x+5\right)} i \frac{x+7}{x+7}. Pomnožite \frac{1}{\left(x+5\right)\left(x+7\right)} i \frac{x+1}{x+1}.
\frac{2\left(x+7\right)+x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Budući da \frac{2\left(x+7\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)} i \frac{x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{2x+14+x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Pomnožite izraz 2\left(x+7\right)+x+1.
\frac{3x+15}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Kombinirajte slične izraze u 2x+14+x+1.
\frac{3\left(x+5\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Rastavite na faktore izraze koji još nisu rastavljeni na faktore u izrazu \frac{3x+15}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}.
\frac{3}{\left(x+1\right)\left(x+7\right)}
Skratite x+5 u brojniku i nazivniku.
\frac{3}{x^{2}+8x+7}
Proširivanje broja \left(x+1\right)\left(x+7\right).
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}