Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Proširi
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

\frac{1}{\left(x-2\right)\left(-x+2\right)}-\frac{4}{\left(x-2\right)\left(x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Rastavite 4x-x^{2}-4 na faktore. Rastavite x^{2}-4 na faktore.
\frac{x+2}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}-\frac{4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-2\right)\left(-x+2\right) i \left(x-2\right)\left(x+2\right) jest \left(x-2\right)\left(x+2\right)\left(-x+2\right). Pomnožite \frac{1}{\left(x-2\right)\left(-x+2\right)} i \frac{x+2}{x+2}. Pomnožite \frac{4}{\left(x-2\right)\left(x+2\right)} i \frac{-x+2}{-x+2}.
\frac{x+2-4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Budući da \frac{x+2}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} i \frac{4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{x+2+4x-8}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Pomnožite izraz x+2-4\left(-x+2\right).
\frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Kombinirajte slične izraze u x+2+4x-8.
\frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-2\right)\left(x+2\right)\left(-x+2\right) i 2-x jest \left(x-2\right)\left(x+2\right)\left(-x+2\right). Pomnožite \frac{x}{2-x} i \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{5x-6+x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Budući da \frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} i \frac{x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{5x-6+x^{3}+2x^{2}-2x^{2}-4x}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Pomnožite izraz 5x-6+x\left(x-2\right)\left(x+2\right).
\frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Kombinirajte slične izraze u 5x-6+x^{3}+2x^{2}-2x^{2}-4x.
\frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-2\right)\left(x+2\right)\left(-x+2\right) i x+2 jest \left(x-2\right)\left(x+2\right)\left(-x+2\right). Pomnožite \frac{x+1}{x+2} i \frac{\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(-x+2\right)}.
\frac{x-6+x^{3}+\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Budući da \frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} i \frac{\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{x-6+x^{3}-x^{3}+4x^{2}-4x-x^{2}+4x-4}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Pomnožite izraz x-6+x^{3}+\left(x+1\right)\left(x-2\right)\left(-x+2\right).
\frac{x-10+3x^{2}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Kombinirajte slične izraze u x-6+x^{3}-x^{3}+4x^{2}-4x-x^{2}+4x-4.
\frac{\left(3x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Rastavite na faktore izraze koji još nisu rastavljeni na faktore u izrazu \frac{x-10+3x^{2}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}.
\frac{3x-5}{\left(x-2\right)\left(-x+2\right)}
Skratite x+2 u brojniku i nazivniku.
\frac{3x-5}{-x^{2}+4x-4}
Proširivanje broja \left(x-2\right)\left(-x+2\right).
\frac{1}{\left(x-2\right)\left(-x+2\right)}-\frac{4}{\left(x-2\right)\left(x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Rastavite 4x-x^{2}-4 na faktore. Rastavite x^{2}-4 na faktore.
\frac{x+2}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}-\frac{4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-2\right)\left(-x+2\right) i \left(x-2\right)\left(x+2\right) jest \left(x-2\right)\left(x+2\right)\left(-x+2\right). Pomnožite \frac{1}{\left(x-2\right)\left(-x+2\right)} i \frac{x+2}{x+2}. Pomnožite \frac{4}{\left(x-2\right)\left(x+2\right)} i \frac{-x+2}{-x+2}.
\frac{x+2-4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Budući da \frac{x+2}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} i \frac{4\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{x+2+4x-8}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Pomnožite izraz x+2-4\left(-x+2\right).
\frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x}{2-x}+\frac{x+1}{x+2}
Kombinirajte slične izraze u x+2+4x-8.
\frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-2\right)\left(x+2\right)\left(-x+2\right) i 2-x jest \left(x-2\right)\left(x+2\right)\left(-x+2\right). Pomnožite \frac{x}{2-x} i \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{5x-6+x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Budući da \frac{5x-6}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} i \frac{x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{5x-6+x^{3}+2x^{2}-2x^{2}-4x}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Pomnožite izraz 5x-6+x\left(x-2\right)\left(x+2\right).
\frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{x+1}{x+2}
Kombinirajte slične izraze u 5x-6+x^{3}+2x^{2}-2x^{2}-4x.
\frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}+\frac{\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-2\right)\left(x+2\right)\left(-x+2\right) i x+2 jest \left(x-2\right)\left(x+2\right)\left(-x+2\right). Pomnožite \frac{x+1}{x+2} i \frac{\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(-x+2\right)}.
\frac{x-6+x^{3}+\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Budući da \frac{x-6+x^{3}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} i \frac{\left(x+1\right)\left(x-2\right)\left(-x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{x-6+x^{3}-x^{3}+4x^{2}-4x-x^{2}+4x-4}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Pomnožite izraz x-6+x^{3}+\left(x+1\right)\left(x-2\right)\left(-x+2\right).
\frac{x-10+3x^{2}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Kombinirajte slične izraze u x-6+x^{3}-x^{3}+4x^{2}-4x-x^{2}+4x-4.
\frac{\left(3x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}
Rastavite na faktore izraze koji još nisu rastavljeni na faktore u izrazu \frac{x-10+3x^{2}}{\left(x-2\right)\left(x+2\right)\left(-x+2\right)}.
\frac{3x-5}{\left(x-2\right)\left(-x+2\right)}
Skratite x+2 u brojniku i nazivniku.
\frac{3x-5}{-x^{2}+4x-4}
Proširivanje broja \left(x-2\right)\left(-x+2\right).