Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Proširi
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Koristite svojstvo distributivnosti da biste pomnožili x+3 s x+4 i kombinirali slične izraze.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Razmotrite \left(x+1\right)\left(x-1\right). Umnožak se može pretvoriti u razliku kvadrata pomoću sljedećeg pravila: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrirajte 1.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Koristite svojstvo distributivnosti da biste pomnožili x^{2} s 1+x.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
Koristite svojstvo distributivnosti da biste pomnožili 3 s x+3.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
Pomnožite \frac{x^{2}+7x+12}{x^{2}-1} i \frac{x^{2}+x^{3}}{x+4} tako da pomnožite brojnik s brojnikom i nazivnik s nazivnikom.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
Pomnožite \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)} i \frac{x-1}{3x+9} tako da pomnožite brojnik s brojnikom i nazivnik s nazivnikom.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
Rastavite na faktore izraze koji još nisu rastavljeni na faktore.
\frac{x^{2}}{3}
Skratite \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right) u brojniku i nazivniku.
\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Koristite svojstvo distributivnosti da biste pomnožili x+3 s x+4 i kombinirali slične izraze.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Razmotrite \left(x+1\right)\left(x-1\right). Umnožak se može pretvoriti u razliku kvadrata pomoću sljedećeg pravila: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrirajte 1.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Koristite svojstvo distributivnosti da biste pomnožili x^{2} s 1+x.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
Koristite svojstvo distributivnosti da biste pomnožili 3 s x+3.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
Pomnožite \frac{x^{2}+7x+12}{x^{2}-1} i \frac{x^{2}+x^{3}}{x+4} tako da pomnožite brojnik s brojnikom i nazivnik s nazivnikom.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
Pomnožite \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)} i \frac{x-1}{3x+9} tako da pomnožite brojnik s brojnikom i nazivnik s nazivnikom.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
Rastavite na faktore izraze koji još nisu rastavljeni na faktore.
\frac{x^{2}}{3}
Skratite \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right) u brojniku i nazivniku.