Izračunaj
\frac{23p}{98q}
Proširi
\frac{23p}{98q}
Dijeliti
Kopirano u međuspremnik
\frac{\frac{5pp}{2q\times 3}+\frac{p^{2}}{8q}}{4p+\frac{p}{12}}
Pomnožite \frac{5p}{2q} i \frac{p}{3} tako da pomnožite brojnik s brojnikom i nazivnik s nazivnikom.
\frac{\frac{4\times 5pp}{24q}+\frac{3p^{2}}{24q}}{4p+\frac{p}{12}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva 2q\times 3 i 8q jest 24q. Pomnožite \frac{5pp}{2q\times 3} i \frac{4}{4}. Pomnožite \frac{p^{2}}{8q} i \frac{3}{3}.
\frac{\frac{4\times 5pp+3p^{2}}{24q}}{4p+\frac{p}{12}}
Budući da \frac{4\times 5pp}{24q} i \frac{3p^{2}}{24q} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{\frac{20p^{2}+3p^{2}}{24q}}{4p+\frac{p}{12}}
Pomnožite izraz 4\times 5pp+3p^{2}.
\frac{\frac{23p^{2}}{24q}}{4p+\frac{p}{12}}
Kombinirajte slične izraze u 20p^{2}+3p^{2}.
\frac{\frac{23p^{2}}{24q}}{\frac{49}{12}p}
Kombinirajte 4p i \frac{p}{12} da biste dobili \frac{49}{12}p.
\frac{23p^{2}}{24q\times \frac{49}{12}p}
Izrazite \frac{\frac{23p^{2}}{24q}}{\frac{49}{12}p} kao jedan razlomak.
\frac{23p}{\frac{49}{12}\times 24q}
Skratite p u brojniku i nazivniku.
\frac{23p}{98q}
Pomnožite \frac{49}{12} i 24 da biste dobili 98.
\frac{\frac{5pp}{2q\times 3}+\frac{p^{2}}{8q}}{4p+\frac{p}{12}}
Pomnožite \frac{5p}{2q} i \frac{p}{3} tako da pomnožite brojnik s brojnikom i nazivnik s nazivnikom.
\frac{\frac{4\times 5pp}{24q}+\frac{3p^{2}}{24q}}{4p+\frac{p}{12}}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva 2q\times 3 i 8q jest 24q. Pomnožite \frac{5pp}{2q\times 3} i \frac{4}{4}. Pomnožite \frac{p^{2}}{8q} i \frac{3}{3}.
\frac{\frac{4\times 5pp+3p^{2}}{24q}}{4p+\frac{p}{12}}
Budući da \frac{4\times 5pp}{24q} i \frac{3p^{2}}{24q} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{\frac{20p^{2}+3p^{2}}{24q}}{4p+\frac{p}{12}}
Pomnožite izraz 4\times 5pp+3p^{2}.
\frac{\frac{23p^{2}}{24q}}{4p+\frac{p}{12}}
Kombinirajte slične izraze u 20p^{2}+3p^{2}.
\frac{\frac{23p^{2}}{24q}}{\frac{49}{12}p}
Kombinirajte 4p i \frac{p}{12} da biste dobili \frac{49}{12}p.
\frac{23p^{2}}{24q\times \frac{49}{12}p}
Izrazite \frac{\frac{23p^{2}}{24q}}{\frac{49}{12}p} kao jedan razlomak.
\frac{23p}{\frac{49}{12}\times 24q}
Skratite p u brojniku i nazivniku.
\frac{23p}{98q}
Pomnožite \frac{49}{12} i 24 da biste dobili 98.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}