Izračunaj
2x+3
Faktor
2x+3
Grafikon
Dijeliti
Kopirano u međuspremnik
\frac{\left(\sqrt{3}\right)^{2}+4x\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Sve što se podijeli s jedan, kao rezultat daje sami djeljenik.
\frac{3+4x\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Kvadrat od \sqrt{3} je 3.
\frac{3+4x\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Racionalizirajte nazivnik \frac{1}{\sqrt{2}} množenje brojnik i nazivnik \sqrt{2}.
\frac{3+4x\times \left(\frac{\sqrt{2}}{2}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Kvadrat od \sqrt{2} je 2.
\frac{3+4x\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Da biste izračunali \frac{\sqrt{2}}{2} na neku potenciju, potencirajte i brojnik i nazivnik te ih podijelite.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Izrazite 4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} kao jedan razlomak.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Pomnožite 3 i 5 da biste dobili 15.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Racionalizirajte nazivnik \frac{2}{\sqrt{3}} množenje brojnik i nazivnik \sqrt{3}.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \left(\frac{2\sqrt{3}}{3}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Kvadrat od \sqrt{3} je 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Da biste izračunali \frac{2\sqrt{3}}{3} na neku potenciju, potencirajte i brojnik i nazivnik te ih podijelite.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\times 0}{2+2-\left(\sqrt{3}\right)^{2}}
Izračunajte koliko je 2 na 0 da biste dobili 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Pomnožite 15 i 0 da biste dobili 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{2^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Proširivanje broja \left(2\sqrt{3}\right)^{2}.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Izračunajte koliko je 2 na 2 da biste dobili 4.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{4\times 3}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Kvadrat od \sqrt{3} je 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{12}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Pomnožite 4 i 3 da biste dobili 12.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{12}{9}}{2+2-\left(\sqrt{3}\right)^{2}}
Izračunajte koliko je 2 na 3 da biste dobili 9.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{4}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Skratite razlomak \frac{12}{9} na najmanje vrijednosti tako da izlučite i poništite 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x}{2+2-\left(\sqrt{3}\right)^{2}}
Pomnožite 0 i \frac{4}{3} da biste dobili 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0}{2+2-\left(\sqrt{3}\right)^{2}}
Sve puta nula daje nulu.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x}{2+2-\left(\sqrt{3}\right)^{2}}
Dodajte 3 broju 0 da biste dobili 3.
\frac{3+\frac{4\times 2}{2^{2}}x}{2+2-\left(\sqrt{3}\right)^{2}}
Kvadrat od \sqrt{2} je 2.
\frac{3+\frac{8}{2^{2}}x}{2+2-\left(\sqrt{3}\right)^{2}}
Pomnožite 4 i 2 da biste dobili 8.
\frac{3+\frac{8}{4}x}{2+2-\left(\sqrt{3}\right)^{2}}
Izračunajte koliko je 2 na 2 da biste dobili 4.
\frac{3+2x}{2+2-\left(\sqrt{3}\right)^{2}}
Podijelite 8 s 4 da biste dobili 2.
\frac{3+2x}{4-\left(\sqrt{3}\right)^{2}}
Dodajte 2 broju 2 da biste dobili 4.
\frac{3+2x}{4-3}
Kvadrat od \sqrt{3} je 3.
\frac{3+2x}{1}
Oduzmite 3 od 4 da biste dobili 1.
3+2x
Sve što se podijeli s jedan, kao rezultat daje sami djeljenik.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}