Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Proširi
Tick mark Image

Slični problemi iz pretraživanja weba

Dijeliti

\left(\left(\frac{1}{2}a-\frac{2}{3}b\right)\left(\frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}\right)-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Upotrijebite binomni teorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} da biste proširili \left(\frac{1}{2}a+\frac{2}{3}b\right)^{3}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Koristite svojstvo distributivnosti da biste pomnožili \frac{1}{2}a-\frac{2}{3}b s \frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3} i kombinirali slične izraze.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Razmotrite \left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right). Umnožak se može pretvoriti u razliku kvadrata pomoću sljedećeg pravila: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Proširivanje broja \left(\frac{1}{4}a^{2}\right)^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Da biste izračunali potenciju potencije, pomnožite eksponente. Pomnožite 2 i 2 da biste dobili 4.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Izračunajte koliko je 2 na \frac{1}{4} da biste dobili \frac{1}{16}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}\left(b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Proširivanje broja \left(\frac{4}{9}b^{2}\right)^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Da biste izračunali potenciju potencije, pomnožite eksponente. Pomnožite 2 i 2 da biste dobili 4.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\frac{16}{81}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Izračunajte koliko je 2 na \frac{4}{9} da biste dobili \frac{16}{81}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\frac{1}{16}a^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Da biste pronašli suprotnu vrijednost izraza \frac{1}{16}a^{4}-\frac{16}{81}b^{4}, pronađite suprotnu verziju svakog člana.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Kombinirajte \frac{1}{16}a^{4} i -\frac{1}{16}a^{4} da biste dobili 0.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Kombinirajte -\frac{16}{81}b^{4} i \frac{16}{81}b^{4} da biste dobili 0.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{6}a^{3}b-\frac{1}{27}ab^{3}\right)^{3}
Koristite svojstvo distributivnosti da biste pomnožili -\frac{1}{3}ab s \frac{1}{2}a^{2}+\frac{1}{9}b^{2}.
\left(-\frac{8}{27}ab^{3}-\frac{1}{27}ab^{3}\right)^{3}
Kombinirajte \frac{1}{6}a^{3}b i -\frac{1}{6}a^{3}b da biste dobili 0.
\left(-\frac{1}{3}ab^{3}\right)^{3}
Kombinirajte -\frac{8}{27}ab^{3} i -\frac{1}{27}ab^{3} da biste dobili -\frac{1}{3}ab^{3}.
\left(-\frac{1}{3}\right)^{3}a^{3}\left(b^{3}\right)^{3}
Proširivanje broja \left(-\frac{1}{3}ab^{3}\right)^{3}.
\left(-\frac{1}{3}\right)^{3}a^{3}b^{9}
Da biste izračunali potenciju potencije, pomnožite eksponente. Pomnožite 3 i 3 da biste dobili 9.
-\frac{1}{27}a^{3}b^{9}
Izračunajte koliko je 3 na -\frac{1}{3} da biste dobili -\frac{1}{27}.
\left(\left(\frac{1}{2}a-\frac{2}{3}b\right)\left(\frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}\right)-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Upotrijebite binomni teorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} da biste proširili \left(\frac{1}{2}a+\frac{2}{3}b\right)^{3}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Koristite svojstvo distributivnosti da biste pomnožili \frac{1}{2}a-\frac{2}{3}b s \frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3} i kombinirali slične izraze.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Razmotrite \left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right). Umnožak se može pretvoriti u razliku kvadrata pomoću sljedećeg pravila: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Proširivanje broja \left(\frac{1}{4}a^{2}\right)^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Da biste izračunali potenciju potencije, pomnožite eksponente. Pomnožite 2 i 2 da biste dobili 4.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Izračunajte koliko je 2 na \frac{1}{4} da biste dobili \frac{1}{16}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}\left(b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Proširivanje broja \left(\frac{4}{9}b^{2}\right)^{2}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Da biste izračunali potenciju potencije, pomnožite eksponente. Pomnožite 2 i 2 da biste dobili 4.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\frac{16}{81}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Izračunajte koliko je 2 na \frac{4}{9} da biste dobili \frac{16}{81}.
\left(\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\frac{1}{16}a^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Da biste pronašli suprotnu vrijednost izraza \frac{1}{16}a^{4}-\frac{16}{81}b^{4}, pronađite suprotnu verziju svakog člana.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Kombinirajte \frac{1}{16}a^{4} i -\frac{1}{16}a^{4} da biste dobili 0.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)\right)^{3}
Kombinirajte -\frac{16}{81}b^{4} i \frac{16}{81}b^{4} da biste dobili 0.
\left(\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{6}a^{3}b-\frac{1}{27}ab^{3}\right)^{3}
Koristite svojstvo distributivnosti da biste pomnožili -\frac{1}{3}ab s \frac{1}{2}a^{2}+\frac{1}{9}b^{2}.
\left(-\frac{8}{27}ab^{3}-\frac{1}{27}ab^{3}\right)^{3}
Kombinirajte \frac{1}{6}a^{3}b i -\frac{1}{6}a^{3}b da biste dobili 0.
\left(-\frac{1}{3}ab^{3}\right)^{3}
Kombinirajte -\frac{8}{27}ab^{3} i -\frac{1}{27}ab^{3} da biste dobili -\frac{1}{3}ab^{3}.
\left(-\frac{1}{3}\right)^{3}a^{3}\left(b^{3}\right)^{3}
Proširivanje broja \left(-\frac{1}{3}ab^{3}\right)^{3}.
\left(-\frac{1}{3}\right)^{3}a^{3}b^{9}
Da biste izračunali potenciju potencije, pomnožite eksponente. Pomnožite 3 i 3 da biste dobili 9.
-\frac{1}{27}a^{3}b^{9}
Izračunajte koliko je 3 na -\frac{1}{3} da biste dobili -\frac{1}{27}.