Izračunaj
\frac{\left(x-9\right)\left(-x^{2}+21x-50\right)}{6x\left(3-x\right)\left(x+5\right)}
Proširi
\frac{x^{3}-30x^{2}+239x-450}{6x\left(x-3\right)\left(x+5\right)}
Grafikon
Dijeliti
Kopirano u međuspremnik
\left(\frac{10}{\left(x-3\right)\left(x+5\right)}+\frac{x+1}{3\left(-x+3\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Rastavite x^{2}+2x-15 na faktore. Rastavite 9-3x na faktore.
\left(\frac{10\times 3}{3\left(x-3\right)\left(x+5\right)}+\frac{\left(x+1\right)\left(-1\right)\left(x+5\right)}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-3\right)\left(x+5\right) i 3\left(-x+3\right) jest 3\left(x-3\right)\left(x+5\right). Pomnožite \frac{10}{\left(x-3\right)\left(x+5\right)} i \frac{3}{3}. Pomnožite \frac{x+1}{3\left(-x+3\right)} i \frac{-\left(x+5\right)}{-\left(x+5\right)}.
\left(\frac{10\times 3+\left(x+1\right)\left(-1\right)\left(x+5\right)}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Budući da \frac{10\times 3}{3\left(x-3\right)\left(x+5\right)} i \frac{\left(x+1\right)\left(-1\right)\left(x+5\right)}{3\left(x-3\right)\left(x+5\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\left(\frac{30-x^{2}-5x-x-5}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Pomnožite izraz 10\times 3+\left(x+1\right)\left(-1\right)\left(x+5\right).
\left(\frac{25-x^{2}-6x}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Kombinirajte slične izraze u 30-x^{2}-5x-x-5.
\left(\frac{25-x^{2}-6x}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2\left(x+5\right)}\right)\times \frac{x-9}{x}
Rastavite 2x+10 na faktore.
\left(\frac{2\left(25-x^{2}-6x\right)}{6\left(x-3\right)\left(x+5\right)}+\frac{x\times 3\left(x-3\right)}{6\left(x-3\right)\left(x+5\right)}\right)\times \frac{x-9}{x}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva 3\left(x-3\right)\left(x+5\right) i 2\left(x+5\right) jest 6\left(x-3\right)\left(x+5\right). Pomnožite \frac{25-x^{2}-6x}{3\left(x-3\right)\left(x+5\right)} i \frac{2}{2}. Pomnožite \frac{x}{2\left(x+5\right)} i \frac{3\left(x-3\right)}{3\left(x-3\right)}.
\frac{2\left(25-x^{2}-6x\right)+x\times 3\left(x-3\right)}{6\left(x-3\right)\left(x+5\right)}\times \frac{x-9}{x}
Budući da \frac{2\left(25-x^{2}-6x\right)}{6\left(x-3\right)\left(x+5\right)} i \frac{x\times 3\left(x-3\right)}{6\left(x-3\right)\left(x+5\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{50-2x^{2}-12x+3x^{2}-9x}{6\left(x-3\right)\left(x+5\right)}\times \frac{x-9}{x}
Pomnožite izraz 2\left(25-x^{2}-6x\right)+x\times 3\left(x-3\right).
\frac{50+x^{2}-21x}{6\left(x-3\right)\left(x+5\right)}\times \frac{x-9}{x}
Kombinirajte slične izraze u 50-2x^{2}-12x+3x^{2}-9x.
\frac{\left(50+x^{2}-21x\right)\left(x-9\right)}{6\left(x-3\right)\left(x+5\right)x}
Pomnožite \frac{50+x^{2}-21x}{6\left(x-3\right)\left(x+5\right)} i \frac{x-9}{x} tako da pomnožite brojnik s brojnikom i nazivnik s nazivnikom.
\frac{239x-450+x^{3}-30x^{2}}{6\left(x-3\right)\left(x+5\right)x}
Koristite svojstvo distributivnosti da biste pomnožili 50+x^{2}-21x s x-9 i kombinirali slične izraze.
\frac{239x-450+x^{3}-30x^{2}}{\left(6x-18\right)\left(x+5\right)x}
Koristite svojstvo distributivnosti da biste pomnožili 6 s x-3.
\frac{239x-450+x^{3}-30x^{2}}{\left(6x^{2}+12x-90\right)x}
Koristite svojstvo distributivnosti da biste pomnožili 6x-18 s x+5 i kombinirali slične izraze.
\frac{239x-450+x^{3}-30x^{2}}{6x^{3}+12x^{2}-90x}
Koristite svojstvo distributivnosti da biste pomnožili 6x^{2}+12x-90 s x.
\left(\frac{10}{\left(x-3\right)\left(x+5\right)}+\frac{x+1}{3\left(-x+3\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Rastavite x^{2}+2x-15 na faktore. Rastavite 9-3x na faktore.
\left(\frac{10\times 3}{3\left(x-3\right)\left(x+5\right)}+\frac{\left(x+1\right)\left(-1\right)\left(x+5\right)}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-3\right)\left(x+5\right) i 3\left(-x+3\right) jest 3\left(x-3\right)\left(x+5\right). Pomnožite \frac{10}{\left(x-3\right)\left(x+5\right)} i \frac{3}{3}. Pomnožite \frac{x+1}{3\left(-x+3\right)} i \frac{-\left(x+5\right)}{-\left(x+5\right)}.
\left(\frac{10\times 3+\left(x+1\right)\left(-1\right)\left(x+5\right)}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Budući da \frac{10\times 3}{3\left(x-3\right)\left(x+5\right)} i \frac{\left(x+1\right)\left(-1\right)\left(x+5\right)}{3\left(x-3\right)\left(x+5\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\left(\frac{30-x^{2}-5x-x-5}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Pomnožite izraz 10\times 3+\left(x+1\right)\left(-1\right)\left(x+5\right).
\left(\frac{25-x^{2}-6x}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Kombinirajte slične izraze u 30-x^{2}-5x-x-5.
\left(\frac{25-x^{2}-6x}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2\left(x+5\right)}\right)\times \frac{x-9}{x}
Rastavite 2x+10 na faktore.
\left(\frac{2\left(25-x^{2}-6x\right)}{6\left(x-3\right)\left(x+5\right)}+\frac{x\times 3\left(x-3\right)}{6\left(x-3\right)\left(x+5\right)}\right)\times \frac{x-9}{x}
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva 3\left(x-3\right)\left(x+5\right) i 2\left(x+5\right) jest 6\left(x-3\right)\left(x+5\right). Pomnožite \frac{25-x^{2}-6x}{3\left(x-3\right)\left(x+5\right)} i \frac{2}{2}. Pomnožite \frac{x}{2\left(x+5\right)} i \frac{3\left(x-3\right)}{3\left(x-3\right)}.
\frac{2\left(25-x^{2}-6x\right)+x\times 3\left(x-3\right)}{6\left(x-3\right)\left(x+5\right)}\times \frac{x-9}{x}
Budući da \frac{2\left(25-x^{2}-6x\right)}{6\left(x-3\right)\left(x+5\right)} i \frac{x\times 3\left(x-3\right)}{6\left(x-3\right)\left(x+5\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{50-2x^{2}-12x+3x^{2}-9x}{6\left(x-3\right)\left(x+5\right)}\times \frac{x-9}{x}
Pomnožite izraz 2\left(25-x^{2}-6x\right)+x\times 3\left(x-3\right).
\frac{50+x^{2}-21x}{6\left(x-3\right)\left(x+5\right)}\times \frac{x-9}{x}
Kombinirajte slične izraze u 50-2x^{2}-12x+3x^{2}-9x.
\frac{\left(50+x^{2}-21x\right)\left(x-9\right)}{6\left(x-3\right)\left(x+5\right)x}
Pomnožite \frac{50+x^{2}-21x}{6\left(x-3\right)\left(x+5\right)} i \frac{x-9}{x} tako da pomnožite brojnik s brojnikom i nazivnik s nazivnikom.
\frac{239x-450+x^{3}-30x^{2}}{6\left(x-3\right)\left(x+5\right)x}
Koristite svojstvo distributivnosti da biste pomnožili 50+x^{2}-21x s x-9 i kombinirali slične izraze.
\frac{239x-450+x^{3}-30x^{2}}{\left(6x-18\right)\left(x+5\right)x}
Koristite svojstvo distributivnosti da biste pomnožili 6 s x-3.
\frac{239x-450+x^{3}-30x^{2}}{\left(6x^{2}+12x-90\right)x}
Koristite svojstvo distributivnosti da biste pomnožili 6x-18 s x+5 i kombinirali slične izraze.
\frac{239x-450+x^{3}-30x^{2}}{6x^{3}+12x^{2}-90x}
Koristite svojstvo distributivnosti da biste pomnožili 6x^{2}+12x-90 s x.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}