Saltar ao contido principal
Microsoft
|
Math Solver
Resolver
Prácticas
Xogar
Temas
Pre-álxebra
Media
Modo
Maior factor común
Múltiplos menos comúns
Orde de operacións
Fraccións
Fraccións mixtas
Primeira factorización
Expoñentes
Radicais
Álxebra
Combinar termos como
Solución para unha variable
Factor
Expandir
Avaliar fraccións
Ecuacións lineares
Ecuacións cuadráticas
Desigualdades
Sistemas de ecuacións
Matrices
Trigonometría
Simplificación
Avaliación
Gráficos
Resolver ecuacións
Cálculo
Derivadas
Integrais
Límites
Entradas de álxebra
Entradas trigonometrías
Entradas de cálculo
Entradas de matriz
Resolver
Prácticas
Xogar
Temas
Pre-álxebra
Media
Modo
Maior factor común
Múltiplos menos comúns
Orde de operacións
Fraccións
Fraccións mixtas
Primeira factorización
Expoñentes
Radicais
Álxebra
Combinar termos como
Solución para unha variable
Factor
Expandir
Avaliar fraccións
Ecuacións lineares
Ecuacións cuadráticas
Desigualdades
Sistemas de ecuacións
Matrices
Trigonometría
Simplificación
Avaliación
Gráficos
Resolver ecuacións
Cálculo
Derivadas
Integrais
Límites
Entradas de álxebra
Entradas trigonometrías
Entradas de cálculo
Entradas de matriz
Básico
Álxebra
trigonometría
Cálculo
Estatísticas
Matrices
Personaxes
Calcular
5
Quiz
Limits
\lim_{ x \rightarrow 0 } 5
Problemas similares da busca web
Is \lim_{x\to 0} (x) different from dx
https://math.stackexchange.com/questions/1157952/is-lim-x-to-0-x-different-from-dx
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was dy/dx, where dy and dx were infinitesimal ...
Calculating the limit: \lim \limits_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}.
https://math.stackexchange.com/q/1147074
We want L = \lim_{x\to 0} \frac{\ln(\frac{\sin x}{x})}{x^2} Since the top approaches \ln(1) = 0 and the bottom also approaches 0, we may use L'Hopital: L = \lim_{x\to 0}{\frac{(\frac{x}{\sin x})(\frac{x \cos x - \sin x}{x^2})}{2x}} = \lim_{x\to 0}\frac{x \cos x - \sin x}{2x^2\sin x} ...
Left/right-hand limits and the l'Hôpital's rule
https://math.stackexchange.com/q/346759
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
Arrow in limit operator
https://math.stackexchange.com/questions/36333/arrow-in-limit-operator
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the \searrow and \nearrow notation, but it's a good notation in the ...
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on (0, 1) having no limit as x \to 0
https://math.stackexchange.com/q/2879789
What you did is correct. In order to show that \alpha\neq\beta, suppose otherwise. That is, suppose that \alpha=\beta. I will prove that \lim_{x\to0}f(x)=\alpha(=\beta), thereby reaching a ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Máis Elementos
Compartir
Copia
Copiado a portapapeis
Problemas similares
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Volver arriba