Resolver x
x=-\frac{5-y}{2\left(3-y\right)}
y\neq 3
Resolver y
y=\frac{6x+5}{2x+1}
x\neq -\frac{1}{2}
Gráfico
Compartir
Copiado a portapapeis
y\left(2x+1\right)=2+\left(2x+1\right)\times 3
A variable x non pode ser igual a -\frac{1}{2} porque a división entre cero non está definida. Multiplica ambos lados da ecuación por 2x+1.
2yx+y=2+\left(2x+1\right)\times 3
Usa a propiedade distributiva para multiplicar y por 2x+1.
2yx+y=2+6x+3
Usa a propiedade distributiva para multiplicar 2x+1 por 3.
2yx+y=5+6x
Suma 2 e 3 para obter 5.
2yx+y-6x=5
Resta 6x en ambos lados.
2yx-6x=5-y
Resta y en ambos lados.
\left(2y-6\right)x=5-y
Combina todos os termos que conteñan x.
\frac{\left(2y-6\right)x}{2y-6}=\frac{5-y}{2y-6}
Divide ambos lados entre 2y-6.
x=\frac{5-y}{2y-6}
A división entre 2y-6 desfai a multiplicación por 2y-6.
x=\frac{5-y}{2\left(y-3\right)}
Divide -y+5 entre 2y-6.
x=\frac{5-y}{2\left(y-3\right)}\text{, }x\neq -\frac{1}{2}
A variable x non pode ser igual que -\frac{1}{2}.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}