Saltar ao contido principal
Resolver x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

x^{2}-x-20=0
Resta 20 en ambos lados.
a+b=-1 ab=-20
Para resolver a ecuación, factoriza x^{2}-x-20 usando fórmulas x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) . Para atopar a e b, configura un sistema para resolver.
1,-20 2,-10 4,-5
Dado que ab é negativo, a e b teñen signos opostos. Dado que a+b é negativo, o número negativo ten maior valor absoluto que o positivo. Pon na lista todos eses pares enteiros que dan produto -20.
1-20=-19 2-10=-8 4-5=-1
Calcular a suma para cada parella.
a=-5 b=4
A solución é a parella que fornece a suma -1.
\left(x-5\right)\left(x+4\right)
Reescribe a expresión factorizada \left(x+a\right)\left(x+b\right) usando os valores obtidos.
x=5 x=-4
Para atopar as solucións de ecuación, resolve x-5=0 e x+4=0.
x^{2}-x-20=0
Resta 20 en ambos lados.
a+b=-1 ab=1\left(-20\right)=-20
Para resolver a ecuación, factoriza o lado esquerdo mediante agrupamento. Primeiro, lado esquerdo ten que volver escribirse como x^{2}+ax+bx-20. Para atopar a e b, configura un sistema para resolver.
1,-20 2,-10 4,-5
Dado que ab é negativo, a e b teñen signos opostos. Dado que a+b é negativo, o número negativo ten maior valor absoluto que o positivo. Pon na lista todos eses pares enteiros que dan produto -20.
1-20=-19 2-10=-8 4-5=-1
Calcular a suma para cada parella.
a=-5 b=4
A solución é a parella que fornece a suma -1.
\left(x^{2}-5x\right)+\left(4x-20\right)
Reescribe x^{2}-x-20 como \left(x^{2}-5x\right)+\left(4x-20\right).
x\left(x-5\right)+4\left(x-5\right)
Factoriza x no primeiro e 4 no grupo segundo.
\left(x-5\right)\left(x+4\right)
Factoriza o termo común x-5 mediante a propiedade distributiva.
x=5 x=-4
Para atopar as solucións de ecuación, resolve x-5=0 e x+4=0.
x^{2}-x=20
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x^{2}-x-20=20-20
Resta 20 en ambos lados da ecuación.
x^{2}-x-20=0
Se restas 20 a si mesmo, quédache 0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-20\right)}}{2}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 1, b por -1 e c por -20 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+80}}{2}
Multiplica -4 por -20.
x=\frac{-\left(-1\right)±\sqrt{81}}{2}
Suma 1 a 80.
x=\frac{-\left(-1\right)±9}{2}
Obtén a raíz cadrada de 81.
x=\frac{1±9}{2}
O contrario de -1 é 1.
x=\frac{10}{2}
Agora resolve a ecuación x=\frac{1±9}{2} se ± é máis. Suma 1 a 9.
x=5
Divide 10 entre 2.
x=-\frac{8}{2}
Agora resolve a ecuación x=\frac{1±9}{2} se ± é menos. Resta 9 de 1.
x=-4
Divide -8 entre 2.
x=5 x=-4
A ecuación está resolta.
x^{2}-x=20
As ecuacións cadráticas coma esta pódense resolver completando o cadrado. Para completar o cadrado, a ecuación debe estar na forma x^{2}+bx=c.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=20+\left(-\frac{1}{2}\right)^{2}
Divide -1, o coeficiente do termo x, entre 2 para obter -\frac{1}{2}. Despois, suma o cadrado de -\frac{1}{2} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}-x+\frac{1}{4}=20+\frac{1}{4}
Eleva -\frac{1}{2} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
x^{2}-x+\frac{1}{4}=\frac{81}{4}
Suma 20 a \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{81}{4}
Factoriza x^{2}-x+\frac{1}{4}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Obtén a raíz cadrada de ambos lados da ecuación.
x-\frac{1}{2}=\frac{9}{2} x-\frac{1}{2}=-\frac{9}{2}
Simplifica.
x=5 x=-4
Suma \frac{1}{2} en ambos lados da ecuación.