Resolver x
x = \frac{\sqrt{5} + 3}{2} \approx 2.618033989
x=\frac{3-\sqrt{5}}{2}\approx 0.381966011
Gráfico
Compartir
Copiado a portapapeis
x^{2}-3x+8=7
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x^{2}-3x+8-7=7-7
Resta 7 en ambos lados da ecuación.
x^{2}-3x+8-7=0
Se restas 7 a si mesmo, quédache 0.
x^{2}-3x+1=0
Resta 7 de 8.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4}}{2}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 1, b por -3 e c por 1 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4}}{2}
Eleva -3 ao cadrado.
x=\frac{-\left(-3\right)±\sqrt{5}}{2}
Suma 9 a -4.
x=\frac{3±\sqrt{5}}{2}
O contrario de -3 é 3.
x=\frac{\sqrt{5}+3}{2}
Agora resolve a ecuación x=\frac{3±\sqrt{5}}{2} se ± é máis. Suma 3 a \sqrt{5}.
x=\frac{3-\sqrt{5}}{2}
Agora resolve a ecuación x=\frac{3±\sqrt{5}}{2} se ± é menos. Resta \sqrt{5} de 3.
x=\frac{\sqrt{5}+3}{2} x=\frac{3-\sqrt{5}}{2}
A ecuación está resolta.
x^{2}-3x+8=7
As ecuacións cadráticas coma esta pódense resolver completando o cadrado. Para completar o cadrado, a ecuación debe estar na forma x^{2}+bx=c.
x^{2}-3x+8-8=7-8
Resta 8 en ambos lados da ecuación.
x^{2}-3x=7-8
Se restas 8 a si mesmo, quédache 0.
x^{2}-3x=-1
Resta 8 de 7.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-1+\left(-\frac{3}{2}\right)^{2}
Divide -3, o coeficiente do termo x, entre 2 para obter -\frac{3}{2}. Despois, suma o cadrado de -\frac{3}{2} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}-3x+\frac{9}{4}=-1+\frac{9}{4}
Eleva -\frac{3}{2} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
x^{2}-3x+\frac{9}{4}=\frac{5}{4}
Suma -1 a \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{5}{4}
Factoriza x^{2}-3x+\frac{9}{4}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Obtén a raíz cadrada de ambos lados da ecuación.
x-\frac{3}{2}=\frac{\sqrt{5}}{2} x-\frac{3}{2}=-\frac{\sqrt{5}}{2}
Simplifica.
x=\frac{\sqrt{5}+3}{2} x=\frac{3-\sqrt{5}}{2}
Suma \frac{3}{2} en ambos lados da ecuación.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}