Saltar ao contido principal
Resolver para x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

x^{2}-22x+51=0
Para resolver a desigualdade, factoriza o lado esquerdo. O polinomio cadrático pode factorizarse coa transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), onde x_{1} e x_{2} son as solucións á ecuación cadrática ax^{2}+bx+c=0.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 1\times 51}}{2}
Todas as ecuacións coa forma ax^{2}+bx+c=0 se poden resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitúe 1 por a, -22 por b e 51 por c na fórmula cadrática.
x=\frac{22±2\sqrt{70}}{2}
Fai os cálculos.
x=\sqrt{70}+11 x=11-\sqrt{70}
Resolve a ecuación x=\frac{22±2\sqrt{70}}{2} cando ± é máis e cando ± é menos.
\left(x-\left(\sqrt{70}+11\right)\right)\left(x-\left(11-\sqrt{70}\right)\right)<0
Reescribe a desigualdade utilizando as solucións obtidas.
x-\left(\sqrt{70}+11\right)>0 x-\left(11-\sqrt{70}\right)<0
Para que o produto sexa negativo, x-\left(\sqrt{70}+11\right) e x-\left(11-\sqrt{70}\right) teñen que ser de signo oposto. Considera o caso cando x-\left(\sqrt{70}+11\right) é positivo e x-\left(11-\sqrt{70}\right) negativo.
x\in \emptyset
Isto é falso para calquera x.
x-\left(11-\sqrt{70}\right)>0 x-\left(\sqrt{70}+11\right)<0
Considera o caso cando x-\left(11-\sqrt{70}\right) é positivo e x-\left(\sqrt{70}+11\right) negativo.
x\in \left(11-\sqrt{70},\sqrt{70}+11\right)
A solución que satisfai ambas as dúas desigualdades é x\in \left(11-\sqrt{70},\sqrt{70}+11\right).
x\in \left(11-\sqrt{70},\sqrt{70}+11\right)
A solución final é a unión das solucións obtidas.