Saltar ao contido principal
Resolver x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

a+b=5 ab=6
Para resolver a ecuación, factoriza x^{2}+5x+6 usando fórmulas x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) . Para atopar a e b, configura un sistema para resolver.
1,6 2,3
Dado que ab é positivo, a e b teñen o mesmo signo. Dado que a+b é positivo, a e b son os dous positivos. Pon na lista todos eses pares enteiros que dan produto 6.
1+6=7 2+3=5
Calcular a suma para cada parella.
a=2 b=3
A solución é a parella que fornece a suma 5.
\left(x+2\right)\left(x+3\right)
Reescribe a expresión factorizada \left(x+a\right)\left(x+b\right) usando os valores obtidos.
x=-2 x=-3
Para atopar as solucións de ecuación, resolve x+2=0 e x+3=0.
a+b=5 ab=1\times 6=6
Para resolver a ecuación, factoriza o lado esquerdo mediante agrupamento. Primeiro, lado esquerdo ten que volver escribirse como x^{2}+ax+bx+6. Para atopar a e b, configura un sistema para resolver.
1,6 2,3
Dado que ab é positivo, a e b teñen o mesmo signo. Dado que a+b é positivo, a e b son os dous positivos. Pon na lista todos eses pares enteiros que dan produto 6.
1+6=7 2+3=5
Calcular a suma para cada parella.
a=2 b=3
A solución é a parella que fornece a suma 5.
\left(x^{2}+2x\right)+\left(3x+6\right)
Reescribe x^{2}+5x+6 como \left(x^{2}+2x\right)+\left(3x+6\right).
x\left(x+2\right)+3\left(x+2\right)
Factoriza x no primeiro e 3 no grupo segundo.
\left(x+2\right)\left(x+3\right)
Factoriza o termo común x+2 mediante a propiedade distributiva.
x=-2 x=-3
Para atopar as solucións de ecuación, resolve x+2=0 e x+3=0.
x^{2}+5x+6=0
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 1, b por 5 e c por 6 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 6}}{2}
Eleva 5 ao cadrado.
x=\frac{-5±\sqrt{25-24}}{2}
Multiplica -4 por 6.
x=\frac{-5±\sqrt{1}}{2}
Suma 25 a -24.
x=\frac{-5±1}{2}
Obtén a raíz cadrada de 1.
x=-\frac{4}{2}
Agora resolve a ecuación x=\frac{-5±1}{2} se ± é máis. Suma -5 a 1.
x=-2
Divide -4 entre 2.
x=-\frac{6}{2}
Agora resolve a ecuación x=\frac{-5±1}{2} se ± é menos. Resta 1 de -5.
x=-3
Divide -6 entre 2.
x=-2 x=-3
A ecuación está resolta.
x^{2}+5x+6=0
As ecuacións cadráticas coma esta pódense resolver completando o cadrado. Para completar o cadrado, a ecuación debe estar na forma x^{2}+bx=c.
x^{2}+5x+6-6=-6
Resta 6 en ambos lados da ecuación.
x^{2}+5x=-6
Se restas 6 a si mesmo, quédache 0.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
Divide 5, o coeficiente do termo x, entre 2 para obter \frac{5}{2}. Despois, suma o cadrado de \frac{5}{2} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
Eleva \frac{5}{2} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
Suma -6 a \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
Factoriza x^{2}+5x+\frac{25}{4}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Obtén a raíz cadrada de ambos lados da ecuación.
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
Simplifica.
x=-2 x=-3
Resta \frac{5}{2} en ambos lados da ecuación.