Resolver x
x=-21
x=1
Gráfico
Compartir
Copiado a portapapeis
x^{2}+20x-18-3=0
Resta 3 en ambos lados.
x^{2}+20x-21=0
Resta 3 de -18 para obter -21.
a+b=20 ab=-21
Para resolver a ecuación, factoriza x^{2}+20x-21 usando fórmulas x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) . Para atopar a e b, configura un sistema para resolver.
-1,21 -3,7
Dado que ab é negativo, a e b teñen signos opostos. Dado que a+b é positivo, o número positivo ten maior valor absoluto que o negativo. Pon na lista todos eses pares enteiros que dan produto -21.
-1+21=20 -3+7=4
Calcular a suma para cada parella.
a=-1 b=21
A solución é a parella que fornece a suma 20.
\left(x-1\right)\left(x+21\right)
Reescribe a expresión factorizada \left(x+a\right)\left(x+b\right) usando os valores obtidos.
x=1 x=-21
Para atopar as solucións de ecuación, resolve x-1=0 e x+21=0.
x^{2}+20x-18-3=0
Resta 3 en ambos lados.
x^{2}+20x-21=0
Resta 3 de -18 para obter -21.
a+b=20 ab=1\left(-21\right)=-21
Para resolver a ecuación, factoriza o lado esquerdo mediante agrupamento. Primeiro, lado esquerdo ten que volver escribirse como x^{2}+ax+bx-21. Para atopar a e b, configura un sistema para resolver.
-1,21 -3,7
Dado que ab é negativo, a e b teñen signos opostos. Dado que a+b é positivo, o número positivo ten maior valor absoluto que o negativo. Pon na lista todos eses pares enteiros que dan produto -21.
-1+21=20 -3+7=4
Calcular a suma para cada parella.
a=-1 b=21
A solución é a parella que fornece a suma 20.
\left(x^{2}-x\right)+\left(21x-21\right)
Reescribe x^{2}+20x-21 como \left(x^{2}-x\right)+\left(21x-21\right).
x\left(x-1\right)+21\left(x-1\right)
Factoriza x no primeiro e 21 no grupo segundo.
\left(x-1\right)\left(x+21\right)
Factoriza o termo común x-1 mediante a propiedade distributiva.
x=1 x=-21
Para atopar as solucións de ecuación, resolve x-1=0 e x+21=0.
x^{2}+20x-18=3
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x^{2}+20x-18-3=3-3
Resta 3 en ambos lados da ecuación.
x^{2}+20x-18-3=0
Se restas 3 a si mesmo, quédache 0.
x^{2}+20x-21=0
Resta 3 de -18.
x=\frac{-20±\sqrt{20^{2}-4\left(-21\right)}}{2}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 1, b por 20 e c por -21 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-21\right)}}{2}
Eleva 20 ao cadrado.
x=\frac{-20±\sqrt{400+84}}{2}
Multiplica -4 por -21.
x=\frac{-20±\sqrt{484}}{2}
Suma 400 a 84.
x=\frac{-20±22}{2}
Obtén a raíz cadrada de 484.
x=\frac{2}{2}
Agora resolve a ecuación x=\frac{-20±22}{2} se ± é máis. Suma -20 a 22.
x=1
Divide 2 entre 2.
x=-\frac{42}{2}
Agora resolve a ecuación x=\frac{-20±22}{2} se ± é menos. Resta 22 de -20.
x=-21
Divide -42 entre 2.
x=1 x=-21
A ecuación está resolta.
x^{2}+20x-18=3
As ecuacións cadráticas coma esta pódense resolver completando o cadrado. Para completar o cadrado, a ecuación debe estar na forma x^{2}+bx=c.
x^{2}+20x-18-\left(-18\right)=3-\left(-18\right)
Suma 18 en ambos lados da ecuación.
x^{2}+20x=3-\left(-18\right)
Se restas -18 a si mesmo, quédache 0.
x^{2}+20x=21
Resta -18 de 3.
x^{2}+20x+10^{2}=21+10^{2}
Divide 20, o coeficiente do termo x, entre 2 para obter 10. Despois, suma o cadrado de 10 en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}+20x+100=21+100
Eleva 10 ao cadrado.
x^{2}+20x+100=121
Suma 21 a 100.
\left(x+10\right)^{2}=121
Factoriza x^{2}+20x+100. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+10\right)^{2}}=\sqrt{121}
Obtén a raíz cadrada de ambos lados da ecuación.
x+10=11 x+10=-11
Simplifica.
x=1 x=-21
Resta 10 en ambos lados da ecuación.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}