Resolver x
x = \frac{\sqrt{149} + 3}{10} \approx 1.520655562
x=\frac{3-\sqrt{149}}{10}\approx -0.920655562
Gráfico
Compartir
Copiado a portapapeis
x-\frac{7}{5x-3}=0
Resta \frac{7}{5x-3} en ambos lados.
\frac{x\left(5x-3\right)}{5x-3}-\frac{7}{5x-3}=0
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica x por \frac{5x-3}{5x-3}.
\frac{x\left(5x-3\right)-7}{5x-3}=0
Dado que \frac{x\left(5x-3\right)}{5x-3} e \frac{7}{5x-3} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{5x^{2}-3x-7}{5x-3}=0
Fai as multiplicacións en x\left(5x-3\right)-7.
5x^{2}-3x-7=0
A variable x non pode ser igual a \frac{3}{5} porque a división entre cero non está definida. Multiplica ambos lados da ecuación por 5x-3.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 5\left(-7\right)}}{2\times 5}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 5, b por -3 e c por -7 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 5\left(-7\right)}}{2\times 5}
Eleva -3 ao cadrado.
x=\frac{-\left(-3\right)±\sqrt{9-20\left(-7\right)}}{2\times 5}
Multiplica -4 por 5.
x=\frac{-\left(-3\right)±\sqrt{9+140}}{2\times 5}
Multiplica -20 por -7.
x=\frac{-\left(-3\right)±\sqrt{149}}{2\times 5}
Suma 9 a 140.
x=\frac{3±\sqrt{149}}{2\times 5}
O contrario de -3 é 3.
x=\frac{3±\sqrt{149}}{10}
Multiplica 2 por 5.
x=\frac{\sqrt{149}+3}{10}
Agora resolve a ecuación x=\frac{3±\sqrt{149}}{10} se ± é máis. Suma 3 a \sqrt{149}.
x=\frac{3-\sqrt{149}}{10}
Agora resolve a ecuación x=\frac{3±\sqrt{149}}{10} se ± é menos. Resta \sqrt{149} de 3.
x=\frac{\sqrt{149}+3}{10} x=\frac{3-\sqrt{149}}{10}
A ecuación está resolta.
x-\frac{7}{5x-3}=0
Resta \frac{7}{5x-3} en ambos lados.
\frac{x\left(5x-3\right)}{5x-3}-\frac{7}{5x-3}=0
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica x por \frac{5x-3}{5x-3}.
\frac{x\left(5x-3\right)-7}{5x-3}=0
Dado que \frac{x\left(5x-3\right)}{5x-3} e \frac{7}{5x-3} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{5x^{2}-3x-7}{5x-3}=0
Fai as multiplicacións en x\left(5x-3\right)-7.
5x^{2}-3x-7=0
A variable x non pode ser igual a \frac{3}{5} porque a división entre cero non está definida. Multiplica ambos lados da ecuación por 5x-3.
5x^{2}-3x=7
Engadir 7 en ambos lados. Calquera valor máis cero é igual ao valor.
\frac{5x^{2}-3x}{5}=\frac{7}{5}
Divide ambos lados entre 5.
x^{2}-\frac{3}{5}x=\frac{7}{5}
A división entre 5 desfai a multiplicación por 5.
x^{2}-\frac{3}{5}x+\left(-\frac{3}{10}\right)^{2}=\frac{7}{5}+\left(-\frac{3}{10}\right)^{2}
Divide -\frac{3}{5}, o coeficiente do termo x, entre 2 para obter -\frac{3}{10}. Despois, suma o cadrado de -\frac{3}{10} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}-\frac{3}{5}x+\frac{9}{100}=\frac{7}{5}+\frac{9}{100}
Eleva -\frac{3}{10} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
x^{2}-\frac{3}{5}x+\frac{9}{100}=\frac{149}{100}
Suma \frac{7}{5} a \frac{9}{100} mediante a busca dun denominador común e a suma dos numeradores. Despois, se é posible, reduce a fracción aos termos máis baixos.
\left(x-\frac{3}{10}\right)^{2}=\frac{149}{100}
Factoriza x^{2}-\frac{3}{5}x+\frac{9}{100}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{10}\right)^{2}}=\sqrt{\frac{149}{100}}
Obtén a raíz cadrada de ambos lados da ecuación.
x-\frac{3}{10}=\frac{\sqrt{149}}{10} x-\frac{3}{10}=-\frac{\sqrt{149}}{10}
Simplifica.
x=\frac{\sqrt{149}+3}{10} x=\frac{3-\sqrt{149}}{10}
Suma \frac{3}{10} en ambos lados da ecuación.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}