Saltar ao contido principal
Calcular
Tick mark Image
Expandir
Tick mark Image

Problemas similares da busca web

Compartir

t\times \frac{4\times 1}{5\times 2}\left(30-4t\right)
Multiplica \frac{4}{5} por \frac{1}{2} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
t\times \frac{4}{10}\left(30-4t\right)
Fai as multiplicacións na fracción \frac{4\times 1}{5\times 2}.
t\times \frac{2}{5}\left(30-4t\right)
Reduce a fracción \frac{4}{10} a termos máis baixos extraendo e cancelando 2.
t\times \frac{2}{5}\times 30+t\times \frac{2}{5}\left(-4\right)t
Usa a propiedade distributiva para multiplicar t\times \frac{2}{5} por 30-4t.
t\times \frac{2}{5}\times 30+t^{2}\times \frac{2}{5}\left(-4\right)
Multiplica t e t para obter t^{2}.
t\times \frac{2\times 30}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Expresa \frac{2}{5}\times 30 como unha única fracción.
t\times \frac{60}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Multiplica 2 e 30 para obter 60.
t\times 12+t^{2}\times \frac{2}{5}\left(-4\right)
Divide 60 entre 5 para obter 12.
t\times 12+t^{2}\times \frac{2\left(-4\right)}{5}
Expresa \frac{2}{5}\left(-4\right) como unha única fracción.
t\times 12+t^{2}\times \frac{-8}{5}
Multiplica 2 e -4 para obter -8.
t\times 12+t^{2}\left(-\frac{8}{5}\right)
A fracción \frac{-8}{5} pode volver escribirse como -\frac{8}{5} extraendo o signo negativo.
t\times \frac{4\times 1}{5\times 2}\left(30-4t\right)
Multiplica \frac{4}{5} por \frac{1}{2} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
t\times \frac{4}{10}\left(30-4t\right)
Fai as multiplicacións na fracción \frac{4\times 1}{5\times 2}.
t\times \frac{2}{5}\left(30-4t\right)
Reduce a fracción \frac{4}{10} a termos máis baixos extraendo e cancelando 2.
t\times \frac{2}{5}\times 30+t\times \frac{2}{5}\left(-4\right)t
Usa a propiedade distributiva para multiplicar t\times \frac{2}{5} por 30-4t.
t\times \frac{2}{5}\times 30+t^{2}\times \frac{2}{5}\left(-4\right)
Multiplica t e t para obter t^{2}.
t\times \frac{2\times 30}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Expresa \frac{2}{5}\times 30 como unha única fracción.
t\times \frac{60}{5}+t^{2}\times \frac{2}{5}\left(-4\right)
Multiplica 2 e 30 para obter 60.
t\times 12+t^{2}\times \frac{2}{5}\left(-4\right)
Divide 60 entre 5 para obter 12.
t\times 12+t^{2}\times \frac{2\left(-4\right)}{5}
Expresa \frac{2}{5}\left(-4\right) como unha única fracción.
t\times 12+t^{2}\times \frac{-8}{5}
Multiplica 2 e -4 para obter -8.
t\times 12+t^{2}\left(-\frac{8}{5}\right)
A fracción \frac{-8}{5} pode volver escribirse como -\frac{8}{5} extraendo o signo negativo.