Saltar ao contido principal
Resolver V
Tick mark Image
Resolver g
Tick mark Image

Compartir

g\times 2\times \frac{1}{10000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
Calcula 10 á potencia de -7 e obtén \frac{1}{10000000}.
g\times \frac{1}{5000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
Multiplica 2 e \frac{1}{10000000} para obter \frac{1}{5000000}.
g\times \frac{1}{5000000}=\frac{1334000\times 10^{-11}V}{1700^{2}}
Multiplica 2000 e 667 para obter 1334000.
g\times \frac{1}{5000000}=\frac{1334000\times \frac{1}{100000000000}V}{1700^{2}}
Calcula 10 á potencia de -11 e obtén \frac{1}{100000000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{1700^{2}}
Multiplica 1334000 e \frac{1}{100000000000} para obter \frac{667}{50000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{2890000}
Calcula 1700 á potencia de 2 e obtén 2890000.
g\times \frac{1}{5000000}=\frac{667}{144500000000000}V
Divide \frac{667}{50000000}V entre 2890000 para obter \frac{667}{144500000000000}V.
\frac{667}{144500000000000}V=g\times \frac{1}{5000000}
Cambia de lado para que todos os termos variables estean no lado esquerdo.
\frac{667}{144500000000000}V=\frac{g}{5000000}
A ecuación está en forma estándar.
\frac{\frac{667}{144500000000000}V}{\frac{667}{144500000000000}}=\frac{g}{\frac{667}{144500000000000}\times 5000000}
Divide ambos lados da ecuación entre \frac{667}{144500000000000}, o que é igual a multiplicar ambos lados polo recíproco da fracción.
V=\frac{g}{\frac{667}{144500000000000}\times 5000000}
A división entre \frac{667}{144500000000000} desfai a multiplicación por \frac{667}{144500000000000}.
V=\frac{28900000g}{667}
Divide \frac{g}{5000000} entre \frac{667}{144500000000000} mediante a multiplicación de \frac{g}{5000000} polo recíproco de \frac{667}{144500000000000}.
g\times 2\times \frac{1}{10000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
Calcula 10 á potencia de -7 e obtén \frac{1}{10000000}.
g\times \frac{1}{5000000}=\frac{2000\times 667\times 10^{-11}V}{1700^{2}}
Multiplica 2 e \frac{1}{10000000} para obter \frac{1}{5000000}.
g\times \frac{1}{5000000}=\frac{1334000\times 10^{-11}V}{1700^{2}}
Multiplica 2000 e 667 para obter 1334000.
g\times \frac{1}{5000000}=\frac{1334000\times \frac{1}{100000000000}V}{1700^{2}}
Calcula 10 á potencia de -11 e obtén \frac{1}{100000000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{1700^{2}}
Multiplica 1334000 e \frac{1}{100000000000} para obter \frac{667}{50000000}.
g\times \frac{1}{5000000}=\frac{\frac{667}{50000000}V}{2890000}
Calcula 1700 á potencia de 2 e obtén 2890000.
g\times \frac{1}{5000000}=\frac{667}{144500000000000}V
Divide \frac{667}{50000000}V entre 2890000 para obter \frac{667}{144500000000000}V.
\frac{1}{5000000}g=\frac{667V}{144500000000000}
A ecuación está en forma estándar.
\frac{\frac{1}{5000000}g}{\frac{1}{5000000}}=\frac{667V}{\frac{1}{5000000}\times 144500000000000}
Multiplica ambos lados por 5000000.
g=\frac{667V}{\frac{1}{5000000}\times 144500000000000}
A división entre \frac{1}{5000000} desfai a multiplicación por \frac{1}{5000000}.
g=\frac{667V}{28900000}
Divide \frac{667V}{144500000000000} entre \frac{1}{5000000} mediante a multiplicación de \frac{667V}{144500000000000} polo recíproco de \frac{1}{5000000}.