Resolver f
f=-\frac{5x}{3\left(2x-7\right)}
x\neq 0\text{ and }x\neq \frac{7}{2}
Resolver x
x=\frac{21f}{6f+5}
f\neq -\frac{5}{6}\text{ and }f\neq 0
Gráfico
Compartir
Copiado a portapapeis
5f^{-1}x=21-6x
Multiplica ambos lados da ecuación por 5.
5\times \frac{1}{f}x=-6x+21
Reordena os termos.
5\times 1x=-6xf+f\times 21
A variable f non pode ser igual a 0 porque a división entre cero non está definida. Multiplica ambos lados da ecuación por f.
5x=-6xf+f\times 21
Multiplica 5 e 1 para obter 5.
-6xf+f\times 21=5x
Cambia de lado para que todos os termos variables estean no lado esquerdo.
\left(-6x+21\right)f=5x
Combina todos os termos que conteñan f.
\left(21-6x\right)f=5x
A ecuación está en forma estándar.
\frac{\left(21-6x\right)f}{21-6x}=\frac{5x}{21-6x}
Divide ambos lados entre -6x+21.
f=\frac{5x}{21-6x}
A división entre -6x+21 desfai a multiplicación por -6x+21.
f=\frac{5x}{3\left(7-2x\right)}
Divide 5x entre -6x+21.
f=\frac{5x}{3\left(7-2x\right)}\text{, }f\neq 0
A variable f non pode ser igual que 0.
5f^{-1}x=21-6x
Multiplica ambos lados da ecuación por 5.
5f^{-1}x+6x=21
Engadir 6x en ambos lados.
6x+5\times \frac{1}{f}x=21
Reordena os termos.
6xf+5\times 1x=21f
Multiplica ambos lados da ecuación por f.
6xf+5x=21f
Multiplica 5 e 1 para obter 5.
\left(6f+5\right)x=21f
Combina todos os termos que conteñan x.
\frac{\left(6f+5\right)x}{6f+5}=\frac{21f}{6f+5}
Divide ambos lados entre 5+6f.
x=\frac{21f}{6f+5}
A división entre 5+6f desfai a multiplicación por 5+6f.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}