Resolver para c
c\in \mathrm{R}
Compartir
Copiado a portapapeis
c^{2}-c+\frac{3}{2}=0
Para resolver a desigualdade, factoriza o lado esquerdo. O polinomio cadrático pode factorizarse coa transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), onde x_{1} e x_{2} son as solucións á ecuación cadrática ax^{2}+bx+c=0.
c=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times \frac{3}{2}}}{2}
Todas as ecuacións coa forma ax^{2}+bx+c=0 se poden resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitúe 1 por a, -1 por b e \frac{3}{2} por c na fórmula cadrática.
c=\frac{1±\sqrt{-5}}{2}
Fai os cálculos.
0^{2}-0+\frac{3}{2}=\frac{3}{2}
Dado que a raíz cadrada dun número negativo non se define no campo real, non hai solucións. A expresión c^{2}-c+\frac{3}{2} ten o mesmo signo para calquera c. Para determinar o signo, calcula o valor da expresión c=0.
c\in \mathrm{R}
O valor da expresión c^{2}-c+\frac{3}{2} sempre é positivo. A desigualdade mantense para c\in \mathrm{R}.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}