Saltar ao contido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image

Problemas similares da busca web

Compartir

a+b=-10 ab=1\times 25=25
Factoriza a expresión mediante agrupamento. Primeiro, a expresión ten que volver escribirse como c^{2}+ac+bc+25. Para atopar a e b, configura un sistema para resolver.
-1,-25 -5,-5
Dado que ab é positivo, a e b teñen o mesmo signo. Dado que a+b é negativo, a e b son os dous negativos. Pon na lista todos eses pares enteiros que dan produto 25.
-1-25=-26 -5-5=-10
Calcular a suma para cada parella.
a=-5 b=-5
A solución é a parella que fornece a suma -10.
\left(c^{2}-5c\right)+\left(-5c+25\right)
Reescribe c^{2}-10c+25 como \left(c^{2}-5c\right)+\left(-5c+25\right).
c\left(c-5\right)-5\left(c-5\right)
Factoriza c no primeiro e -5 no grupo segundo.
\left(c-5\right)\left(c-5\right)
Factoriza o termo común c-5 mediante a propiedade distributiva.
\left(c-5\right)^{2}
Reescribe como cadrado de binomio.
factor(c^{2}-10c+25)
Este trinomio ten a forma dun cadrado de trinomio, quizais multiplicado por un factor común. Os cadrados de trinomio pódense factorizar mediante o cálculo das raíces cadradas dos termos primeiro e último.
\sqrt{25}=5
Obtén a raíz cadrada do último termo, 25.
\left(c-5\right)^{2}
O cadrado de trinomio é o cadrado de binomio que é a suma ou a diferenza das raíces cadradas dos termos primeiro e último, co signo determinado polo signo do termo central do cadrado de trinomio.
c^{2}-10c+25=0
O polinomio cadrático pode factorizarse coa transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), onde x_{1} e x_{2} son as solucións á ecuación cadrática ax^{2}+bx+c=0.
c=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
c=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
Eleva -10 ao cadrado.
c=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
Multiplica -4 por 25.
c=\frac{-\left(-10\right)±\sqrt{0}}{2}
Suma 100 a -100.
c=\frac{-\left(-10\right)±0}{2}
Obtén a raíz cadrada de 0.
c=\frac{10±0}{2}
O contrario de -10 é 10.
c^{2}-10c+25=\left(c-5\right)\left(c-5\right)
Factoriza a expresión orixinal usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitúe 5 por x_{1} e 5 por x_{2}.