Saltar ao contido principal
Resolver x, y (complex solution)
Tick mark Image
Resolver x, y
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Para resolver un par de ecuacións mediante substitución, resolve primeiro unha das variables nunha das ecuacións. Despois, substitúe o resultado desa variable na outra ecuación.
bx+cy=a+b
Escolle unha das ecuacións e despexa a x mediante o illamento de x no lado esquerdo do signo igual.
bx=\left(-c\right)y+a+b
Resta cy en ambos lados da ecuación.
x=\frac{1}{b}\left(\left(-c\right)y+a+b\right)
Divide ambos lados entre b.
x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}
Multiplica \frac{1}{b} por -cy+a+b.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(\left(-\frac{c}{b}\right)y+\frac{a+b}{b}\right)+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Substitúe x por \frac{-cy+a+b}{b} na outra ecuación, \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}.
\left(-\frac{2ac}{\left(a-b\right)\left(a+b\right)}\right)y+\frac{2a}{a-b}+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Multiplica a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) por \frac{-cy+a+b}{b}.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y+\frac{2a}{a-b}=\frac{2a}{a+b}
Suma -\frac{2acy}{\left(a-b\right)\left(a+b\right)} a \frac{2cay}{\left(b-a\right)\left(b+a\right)}.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y=-\frac{4ab}{a^{2}-b^{2}}
Resta \frac{2a}{a-b} en ambos lados da ecuación.
y=\frac{b}{c}
Divide ambos lados entre \frac{4ca}{\left(b-a\right)\left(a+b\right)}.
x=\left(-\frac{c}{b}\right)\times \frac{b}{c}+\frac{a+b}{b}
Substitúe y por \frac{b}{c} en x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}. Dado que a ecuación resultante contén só unha variable, pódese despexar x directamente.
x=-1+\frac{a+b}{b}
Multiplica -\frac{c}{b} por \frac{b}{c}.
x=\frac{a}{b}
Suma \frac{a+b}{b} a -1.
x=\frac{a}{b},y=\frac{b}{c}
O sistema xa funciona correctamente.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Converte as ecuacións a forma estándar e logo usa matrices para resolver o sistema de ecuacións.
\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Escribe as ecuacións en forma matricial.
inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Multiplica a ecuación pola matriz inversa de \left(\begin{matrix}b&c\\-\frac{2ab}{\left(-a+b\right)\left(a+b\right)}&\frac{2ca}{\left(b-a\right)\left(b+a\right)}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
O produto dunha matriz e o seu inverso é a matriz de identidade.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Multiplica as matrices no lado esquerdo do signo igual.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2ac}{\left(b-a\right)\left(a+b\right)\left(b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}\right)}&-\frac{c}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\\-\frac{\frac{2ab}{\left(a-b\right)\left(a+b\right)}}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}&\frac{b}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
A matriz inversa da matriz 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) é \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), polo que a ecuación da matriz se pode escribir como un problema de multiplicación de matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}&\frac{a}{4b}-\frac{b}{4a}\\\frac{1}{2c}&\frac{\left(b-a\right)\left(a+b\right)}{4ac}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Fai o cálculo.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}\left(a+b\right)+\left(\frac{a}{4b}-\frac{b}{4a}\right)\times \frac{2a}{a+b}\\\frac{1}{2c}\left(a+b\right)+\frac{\left(b-a\right)\left(a+b\right)}{4ac}\times \frac{2a}{a+b}\end{matrix}\right)
Multiplica as matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{a}{b}\\\frac{b}{c}\end{matrix}\right)
Fai o cálculo.
x=\frac{a}{b},y=\frac{b}{c}
Extrae os elementos da matriz x e y.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Para resolver por eliminación, os coeficientes dunha das variables deben ser iguais en ambas ecuacións de xeito que a variable se anule cando unha ecuación se reste da outra.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)abx+\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)acy=\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(a+b\right),b\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+b\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=b\times \frac{2a}{a+b}
Para que bx e \frac{2abx}{\left(a-b\right)\left(a+b\right)} sexan iguais, multiplica todos os termos a cada lado da primeira ecuación por a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) e todos os termos a cada lado da segunda por b.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b},\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b}
Simplifica.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\left(-\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}\right)x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Resta \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b} de \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b} mediante a resta de termos semellantes en ambos lados do signo igual.
\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Suma \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} a -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)}. \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} e -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} anúlanse, polo que queda unha ecuación cunha única variable que se pode resolver.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Suma \frac{2abcy}{\left(a-b\right)\left(a+b\right)} a -\frac{2bcay}{\left(b-a\right)\left(b+a\right)}.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{4ab^{2}}{\left(a-b\right)\left(a+b\right)}
Suma \frac{2ab}{a-b} a -\frac{2ba}{a+b}.
y=\frac{b}{c}
Divide ambos lados entre \frac{4bca}{\left(a-b\right)\left(a+b\right)}.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)c\times \frac{b}{c}=\frac{2a}{a+b}
Substitúe y por \frac{b}{c} en \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}. Dado que a ecuación resultante contén só unha variable, pódese despexar x directamente.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\frac{2ab}{\left(b-a\right)\left(a+b\right)}=\frac{2a}{a+b}
Multiplica c\left(\left(b-a\right)^{-1}-\left(b+a\right)^{-1}\right) por \frac{b}{c}.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax=-\frac{2a^{2}}{\left(b-a\right)\left(a+b\right)}
Resta \frac{2ab}{\left(b-a\right)\left(b+a\right)} en ambos lados da ecuación.
x=\frac{a}{b}
Divide ambos lados entre a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right).
x=\frac{a}{b},y=\frac{b}{c}
O sistema xa funciona correctamente.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Para resolver un par de ecuacións mediante substitución, resolve primeiro unha das variables nunha das ecuacións. Despois, substitúe o resultado desa variable na outra ecuación.
bx+cy=a+b
Escolle unha das ecuacións e despexa a x mediante o illamento de x no lado esquerdo do signo igual.
bx=\left(-c\right)y+a+b
Resta cy en ambos lados da ecuación.
x=\frac{1}{b}\left(\left(-c\right)y+a+b\right)
Divide ambos lados entre b.
x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}
Multiplica \frac{1}{b} por -cy+a+b.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(\left(-\frac{c}{b}\right)y+\frac{a+b}{b}\right)+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Substitúe x por \frac{-cy+a+b}{b} na outra ecuación, \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}.
\left(-\frac{2ac}{\left(a-b\right)\left(a+b\right)}\right)y+\frac{2a}{a-b}+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Multiplica a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) por \frac{-cy+a+b}{b}.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y+\frac{2a}{a-b}=\frac{2a}{a+b}
Suma -\frac{2acy}{\left(a-b\right)\left(a+b\right)} a \frac{2cay}{\left(b-a\right)\left(b+a\right)}.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y=-\frac{4ab}{a^{2}-b^{2}}
Resta \frac{2a}{a-b} en ambos lados da ecuación.
y=\frac{b}{c}
Divide ambos lados entre \frac{4ca}{\left(b-a\right)\left(a+b\right)}.
x=\left(-\frac{c}{b}\right)\times \frac{b}{c}+\frac{a+b}{b}
Substitúe y por \frac{b}{c} en x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}. Dado que a ecuación resultante contén só unha variable, pódese despexar x directamente.
x=-1+\frac{a+b}{b}
Multiplica -\frac{c}{b} por \frac{b}{c}.
x=\frac{a}{b}
Suma \frac{a+b}{b} a -1\text{, }|b|\neq |a|.
x=\frac{a}{b},y=\frac{b}{c}
O sistema xa funciona correctamente.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Converte as ecuacións a forma estándar e logo usa matrices para resolver o sistema de ecuacións.
\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Escribe as ecuacións en forma matricial.
inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Multiplica a ecuación pola matriz inversa de \left(\begin{matrix}b&c\\-\frac{2ab}{\left(-a+b\right)\left(a+b\right)}&\frac{2ca}{\left(b-a\right)\left(b+a\right)}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
O produto dunha matriz e o seu inverso é a matriz de identidade.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Multiplica as matrices no lado esquerdo do signo igual.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2ac}{\left(b-a\right)\left(a+b\right)\left(b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}\right)}&-\frac{c}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\\-\frac{\frac{2ab}{\left(a-b\right)\left(a+b\right)}}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}&\frac{b}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
A matriz inversa da matriz 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) é \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), polo que a ecuación da matriz se pode escribir como un problema de multiplicación de matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}&\frac{a}{4b}-\frac{b}{4a}\\\frac{1}{2c}&\frac{\left(b-a\right)\left(a+b\right)}{4ac}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Fai o cálculo.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}\left(a+b\right)+\left(\frac{a}{4b}-\frac{b}{4a}\right)\times \frac{2a}{a+b}\\\frac{1}{2c}\left(a+b\right)+\frac{\left(b-a\right)\left(a+b\right)}{4ac}\times \frac{2a}{a+b}\end{matrix}\right)
Multiplica as matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{a}{b}\\\frac{b}{c}\end{matrix}\right)
Fai o cálculo.
x=\frac{a}{b},y=\frac{b}{c}
Extrae os elementos da matriz x e y.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Para resolver por eliminación, os coeficientes dunha das variables deben ser iguais en ambas ecuacións de xeito que a variable se anule cando unha ecuación se reste da outra.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)abx+\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)acy=\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(a+b\right),b\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+b\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=b\times \frac{2a}{a+b}
Para que bx e \frac{2abx}{\left(a-b\right)\left(a+b\right)} sexan iguais, multiplica todos os termos a cada lado da primeira ecuación por a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) e todos os termos a cada lado da segunda por b.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b},\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b}
Simplifica.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\left(-\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}\right)x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Resta \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b} de \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b} mediante a resta de termos semellantes en ambos lados do signo igual.
\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Suma \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} a -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)}. \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} e -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} anúlanse, polo que queda unha ecuación cunha única variable que se pode resolver.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Suma \frac{2abcy}{\left(a-b\right)\left(a+b\right)} a -\frac{2bcay}{\left(b-a\right)\left(b+a\right)}.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{4ab^{2}}{\left(a-b\right)\left(a+b\right)}
Suma \frac{2ab}{a-b} a -\frac{2ba}{a+b}.
y=\frac{b}{c}
Divide ambos lados entre \frac{4bca}{\left(a-b\right)\left(a+b\right)}.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)c\times \frac{b}{c}=\frac{2a}{a+b}
Substitúe y por \frac{b}{c} en \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}. Dado que a ecuación resultante contén só unha variable, pódese despexar x directamente.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\frac{2ab}{\left(b-a\right)\left(a+b\right)}=\frac{2a}{a+b}
Multiplica c\left(\left(b-a\right)^{-1}-\left(b+a\right)^{-1}\right) por \frac{b}{c}.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax=-\frac{2a^{2}}{\left(b-a\right)\left(a+b\right)}
Resta \frac{2ab}{\left(b-a\right)\left(b+a\right)} en ambos lados da ecuación.
x=\frac{a}{b}
Divide ambos lados entre a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right).
x=\frac{a}{b},y=\frac{b}{c}
O sistema xa funciona correctamente.