Resolver b
b=2
b=-2
Compartir
Copiado a portapapeis
\left(b-2\right)\left(b+2\right)=0
Considera b^{2}-4. Reescribe b^{2}-4 como b^{2}-2^{2}. Pódese factorizar a diferenza dos cadrados usando a regra: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
b=2 b=-2
Para atopar as solucións de ecuación, resolve b-2=0 e b+2=0.
b^{2}=4
Engadir 4 en ambos lados. Calquera valor máis cero é igual ao valor.
b=2 b=-2
Obtén a raíz cadrada de ambos lados da ecuación.
b^{2}-4=0
As ecuacións cadráticas como estas, cun termo x^{2} pero sen termo x, pódense resolver coa fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, unha vez convertidas en forma estándar: ax^{2}+bx+c=0.
b=\frac{0±\sqrt{0^{2}-4\left(-4\right)}}{2}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 1, b por 0 e c por -4 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\left(-4\right)}}{2}
Eleva 0 ao cadrado.
b=\frac{0±\sqrt{16}}{2}
Multiplica -4 por -4.
b=\frac{0±4}{2}
Obtén a raíz cadrada de 16.
b=2
Agora resolve a ecuación b=\frac{0±4}{2} se ± é máis. Divide 4 entre 2.
b=-2
Agora resolve a ecuación b=\frac{0±4}{2} se ± é menos. Divide -4 entre 2.
b=2 b=-2
A ecuación está resolta.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}