Resolver K
K=\frac{25T_{2}}{29}
m\neq 0
Resolver T_2
T_{2}=\frac{29K}{25}
m\neq 0
Compartir
Copiado a portapapeis
T_{2}\times 380m^{2}=1.52mm\times 290K
Multiplica ambos lados da ecuación por 380m^{2}.
T_{2}\times 380m^{2}=1.52m^{2}\times 290K
Multiplica m e m para obter m^{2}.
T_{2}\times 380m^{2}=440.8m^{2}K
Multiplica 1.52 e 290 para obter 440.8.
440.8m^{2}K=T_{2}\times 380m^{2}
Cambia de lado para que todos os termos variables estean no lado esquerdo.
\frac{2204m^{2}}{5}K=380T_{2}m^{2}
A ecuación está en forma estándar.
\frac{5\times \frac{2204m^{2}}{5}K}{2204m^{2}}=\frac{5\times 380T_{2}m^{2}}{2204m^{2}}
Divide ambos lados entre 440.8m^{2}.
K=\frac{5\times 380T_{2}m^{2}}{2204m^{2}}
A división entre 440.8m^{2} desfai a multiplicación por 440.8m^{2}.
K=\frac{25T_{2}}{29}
Divide 380T_{2}m^{2} entre 440.8m^{2}.
T_{2}=\frac{1.52m^{2}\times 290K}{380mm}
Multiplica m e m para obter m^{2}.
T_{2}=\frac{1.52m^{2}\times 290K}{380m^{2}}
Multiplica m e m para obter m^{2}.
T_{2}=\frac{1.52\times 29K}{38}
Anula 10m^{2} no numerador e no denominador.
T_{2}=\frac{44.08K}{38}
Multiplica 1.52 e 29 para obter 44.08.
T_{2}=1.16K
Divide 44.08K entre 38 para obter 1.16K.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}