Resolver x
x=-\frac{1}{3}\approx -0.333333333
Gráfico
Compartir
Copiado a portapapeis
a+b=6 ab=9\times 1=9
Para resolver a ecuación, factoriza o lado esquerdo mediante agrupamento. Primeiro, lado esquerdo ten que volver escribirse como 9x^{2}+ax+bx+1. Para atopar a e b, configura un sistema para resolver.
1,9 3,3
Dado que ab é positivo, a e b teñen o mesmo signo. Dado que a+b é positivo, a e b son os dous positivos. Pon na lista todos eses pares enteiros que dan produto 9.
1+9=10 3+3=6
Calcular a suma para cada parella.
a=3 b=3
A solución é a parella que fornece a suma 6.
\left(9x^{2}+3x\right)+\left(3x+1\right)
Reescribe 9x^{2}+6x+1 como \left(9x^{2}+3x\right)+\left(3x+1\right).
3x\left(3x+1\right)+3x+1
Factorizar 3x en 9x^{2}+3x.
\left(3x+1\right)\left(3x+1\right)
Factoriza o termo común 3x+1 mediante a propiedade distributiva.
\left(3x+1\right)^{2}
Reescribe como cadrado de binomio.
x=-\frac{1}{3}
Para atopar a solución de ecuación, resolve 3x+1=0.
9x^{2}+6x+1=0
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-6±\sqrt{6^{2}-4\times 9}}{2\times 9}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 9, b por 6 e c por 1 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 9}}{2\times 9}
Eleva 6 ao cadrado.
x=\frac{-6±\sqrt{36-36}}{2\times 9}
Multiplica -4 por 9.
x=\frac{-6±\sqrt{0}}{2\times 9}
Suma 36 a -36.
x=-\frac{6}{2\times 9}
Obtén a raíz cadrada de 0.
x=-\frac{6}{18}
Multiplica 2 por 9.
x=-\frac{1}{3}
Reduce a fracción \frac{-6}{18} a termos máis baixos extraendo e cancelando 6.
9x^{2}+6x+1=0
As ecuacións cadráticas coma esta pódense resolver completando o cadrado. Para completar o cadrado, a ecuación debe estar na forma x^{2}+bx=c.
9x^{2}+6x+1-1=-1
Resta 1 en ambos lados da ecuación.
9x^{2}+6x=-1
Se restas 1 a si mesmo, quédache 0.
\frac{9x^{2}+6x}{9}=-\frac{1}{9}
Divide ambos lados entre 9.
x^{2}+\frac{6}{9}x=-\frac{1}{9}
A división entre 9 desfai a multiplicación por 9.
x^{2}+\frac{2}{3}x=-\frac{1}{9}
Reduce a fracción \frac{6}{9} a termos máis baixos extraendo e cancelando 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, o coeficiente do termo x, entre 2 para obter \frac{1}{3}. Despois, suma o cadrado de \frac{1}{3} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{-1+1}{9}
Eleva \frac{1}{3} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
x^{2}+\frac{2}{3}x+\frac{1}{9}=0
Suma -\frac{1}{9} a \frac{1}{9} mediante a busca dun denominador común e a suma dos numeradores. Despois, se é posible, reduce a fracción aos termos máis baixos.
\left(x+\frac{1}{3}\right)^{2}=0
Factoriza x^{2}+\frac{2}{3}x+\frac{1}{9}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{0}
Obtén a raíz cadrada de ambos lados da ecuación.
x+\frac{1}{3}=0 x+\frac{1}{3}=0
Simplifica.
x=-\frac{1}{3} x=-\frac{1}{3}
Resta \frac{1}{3} en ambos lados da ecuación.
x=-\frac{1}{3}
A ecuación está resolta. As solucións son iguais.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}