Saltar ao contido principal
Resolver x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

77=314x^{2}
Multiplica x e x para obter x^{2}.
314x^{2}=77
Cambia de lado para que todos os termos variables estean no lado esquerdo.
x^{2}=\frac{77}{314}
Divide ambos lados entre 314.
x=\frac{\sqrt{24178}}{314} x=-\frac{\sqrt{24178}}{314}
Obtén a raíz cadrada de ambos lados da ecuación.
77=314x^{2}
Multiplica x e x para obter x^{2}.
314x^{2}=77
Cambia de lado para que todos os termos variables estean no lado esquerdo.
314x^{2}-77=0
Resta 77 en ambos lados.
x=\frac{0±\sqrt{0^{2}-4\times 314\left(-77\right)}}{2\times 314}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 314, b por 0 e c por -77 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 314\left(-77\right)}}{2\times 314}
Eleva 0 ao cadrado.
x=\frac{0±\sqrt{-1256\left(-77\right)}}{2\times 314}
Multiplica -4 por 314.
x=\frac{0±\sqrt{96712}}{2\times 314}
Multiplica -1256 por -77.
x=\frac{0±2\sqrt{24178}}{2\times 314}
Obtén a raíz cadrada de 96712.
x=\frac{0±2\sqrt{24178}}{628}
Multiplica 2 por 314.
x=\frac{\sqrt{24178}}{314}
Agora resolve a ecuación x=\frac{0±2\sqrt{24178}}{628} se ± é máis.
x=-\frac{\sqrt{24178}}{314}
Agora resolve a ecuación x=\frac{0±2\sqrt{24178}}{628} se ± é menos.
x=\frac{\sqrt{24178}}{314} x=-\frac{\sqrt{24178}}{314}
A ecuación está resolta.