Resolver R
R=V\left(\frac{7670R_{1}}{1881}+\frac{53690\Omega }{627}\right)
R_{1}\neq -21\Omega
Resolver R_1
\left\{\begin{matrix}R_{1}=-21\Omega +\frac{1881R}{7670V}\text{, }&R\neq 0\text{ and }V\neq 0\\R_{1}\neq -21\Omega \text{, }&V=0\text{ and }R=0\end{matrix}\right.
Compartir
Copiado a portapapeis
76.7V\left(R_{1}+21\Omega \right)=18.81R
Multiplica ambos lados da ecuación por R_{1}+21\Omega .
76.7VR_{1}+1610.7\Omega V=18.81R
Usa a propiedade distributiva para multiplicar 76.7V por R_{1}+21\Omega .
18.81R=76.7VR_{1}+1610.7\Omega V
Cambia de lado para que todos os termos variables estean no lado esquerdo.
18.81R=\frac{767R_{1}V+16107V\Omega }{10}
A ecuación está en forma estándar.
\frac{18.81R}{18.81}=\frac{V\times \frac{767R_{1}+16107\Omega }{10}}{18.81}
Divide ambos lados da ecuación entre 18.81, o que é igual a multiplicar ambos lados polo recíproco da fracción.
R=\frac{V\times \frac{767R_{1}+16107\Omega }{10}}{18.81}
A división entre 18.81 desfai a multiplicación por 18.81.
R=\frac{7670V\left(R_{1}+21\Omega \right)}{1881}
Divide V\times \frac{767R_{1}+16107\Omega }{10} entre 18.81 mediante a multiplicación de V\times \frac{767R_{1}+16107\Omega }{10} polo recíproco de 18.81.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}