Saltar ao contido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image

Problemas similares da busca web

Compartir

72n^{2}-76n-8=0
O polinomio cadrático pode factorizarse coa transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), onde x_{1} e x_{2} son as solucións á ecuación cadrática ax^{2}+bx+c=0.
n=\frac{-\left(-76\right)±\sqrt{\left(-76\right)^{2}-4\times 72\left(-8\right)}}{2\times 72}
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
n=\frac{-\left(-76\right)±\sqrt{5776-4\times 72\left(-8\right)}}{2\times 72}
Eleva -76 ao cadrado.
n=\frac{-\left(-76\right)±\sqrt{5776-288\left(-8\right)}}{2\times 72}
Multiplica -4 por 72.
n=\frac{-\left(-76\right)±\sqrt{5776+2304}}{2\times 72}
Multiplica -288 por -8.
n=\frac{-\left(-76\right)±\sqrt{8080}}{2\times 72}
Suma 5776 a 2304.
n=\frac{-\left(-76\right)±4\sqrt{505}}{2\times 72}
Obtén a raíz cadrada de 8080.
n=\frac{76±4\sqrt{505}}{2\times 72}
O contrario de -76 é 76.
n=\frac{76±4\sqrt{505}}{144}
Multiplica 2 por 72.
n=\frac{4\sqrt{505}+76}{144}
Agora resolve a ecuación n=\frac{76±4\sqrt{505}}{144} se ± é máis. Suma 76 a 4\sqrt{505}.
n=\frac{\sqrt{505}+19}{36}
Divide 76+4\sqrt{505} entre 144.
n=\frac{76-4\sqrt{505}}{144}
Agora resolve a ecuación n=\frac{76±4\sqrt{505}}{144} se ± é menos. Resta 4\sqrt{505} de 76.
n=\frac{19-\sqrt{505}}{36}
Divide 76-4\sqrt{505} entre 144.
72n^{2}-76n-8=72\left(n-\frac{\sqrt{505}+19}{36}\right)\left(n-\frac{19-\sqrt{505}}{36}\right)
Factoriza a expresión orixinal usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitúe \frac{19+\sqrt{505}}{36} por x_{1} e \frac{19-\sqrt{505}}{36} por x_{2}.