Saltar ao contido principal
Resolver t
Tick mark Image

Problemas similares da busca web

Compartir

\frac{7.5}{5}=t^{2}
Divide ambos lados entre 5.
\frac{75}{50}=t^{2}
Expande \frac{7.5}{5} multiplicando o numerador e o denominador por 10.
\frac{3}{2}=t^{2}
Reduce a fracción \frac{75}{50} a termos máis baixos extraendo e cancelando 25.
t^{2}=\frac{3}{2}
Cambia de lado para que todos os termos variables estean no lado esquerdo.
t=\frac{\sqrt{6}}{2} t=-\frac{\sqrt{6}}{2}
Obtén a raíz cadrada de ambos lados da ecuación.
\frac{7.5}{5}=t^{2}
Divide ambos lados entre 5.
\frac{75}{50}=t^{2}
Expande \frac{7.5}{5} multiplicando o numerador e o denominador por 10.
\frac{3}{2}=t^{2}
Reduce a fracción \frac{75}{50} a termos máis baixos extraendo e cancelando 25.
t^{2}=\frac{3}{2}
Cambia de lado para que todos os termos variables estean no lado esquerdo.
t^{2}-\frac{3}{2}=0
Resta \frac{3}{2} en ambos lados.
t=\frac{0±\sqrt{0^{2}-4\left(-\frac{3}{2}\right)}}{2}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 1, b por 0 e c por -\frac{3}{2} na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-\frac{3}{2}\right)}}{2}
Eleva 0 ao cadrado.
t=\frac{0±\sqrt{6}}{2}
Multiplica -4 por -\frac{3}{2}.
t=\frac{\sqrt{6}}{2}
Agora resolve a ecuación t=\frac{0±\sqrt{6}}{2} se ± é máis.
t=-\frac{\sqrt{6}}{2}
Agora resolve a ecuación t=\frac{0±\sqrt{6}}{2} se ± é menos.
t=\frac{\sqrt{6}}{2} t=-\frac{\sqrt{6}}{2}
A ecuación está resolta.