Calcular
\frac{72036000000000000000000000000}{19}\approx 3.791368421 \cdot 10^{27}
Factorizar
\frac{23 \cdot 29 \cdot 2 ^ {26} \cdot 3 ^ {3} \cdot 5 ^ {24}}{19} = 3.7913684210526317 \times 10^{27}\frac{9}{19} = 3.7913684210526317 \times 10^{27}
Compartir
Copiado a portapapeis
6.67\times 10^{-11}\times \frac{1.9\times 10^{50}\times 1.08}{1.9\times 10^{6}\times 1.9\times 10^{6}}
Para multiplicar potencias da mesma base, suma os seus expoñentes. Suma 27 e 23 para obter 50.
6.67\times 10^{-11}\times \frac{1.9\times 10^{50}\times 1.08}{1.9\times 10^{12}\times 1.9}
Para multiplicar potencias da mesma base, suma os seus expoñentes. Suma 6 e 6 para obter 12.
6.67\times \frac{1}{100000000000}\times \frac{1.9\times 10^{50}\times 1.08}{1.9\times 10^{12}\times 1.9}
Calcula 10 á potencia de -11 e obtén \frac{1}{100000000000}.
\frac{667}{10000000000000}\times \frac{1.9\times 10^{50}\times 1.08}{1.9\times 10^{12}\times 1.9}
Multiplica 6.67 e \frac{1}{100000000000} para obter \frac{667}{10000000000000}.
\frac{667}{10000000000000}\times \frac{1.08\times 1.9\times 10^{38}}{1.9\times 1.9}
Anula 10^{12} no numerador e no denominador.
\frac{667}{10000000000000}\times \frac{1.08\times 10^{38}}{1.9\times 1.9^{0}}
Para dividir potencias da mesma base, resta o expoñente do numerador ao expoñente do denominador.
\frac{667}{10000000000000}\times \frac{1.08\times 100000000000000000000000000000000000000}{1.9\times 1.9^{0}}
Calcula 10 á potencia de 38 e obtén 100000000000000000000000000000000000000.
\frac{667}{10000000000000}\times \frac{108000000000000000000000000000000000000}{1.9\times 1.9^{0}}
Multiplica 1.08 e 100000000000000000000000000000000000000 para obter 108000000000000000000000000000000000000.
\frac{667}{10000000000000}\times \frac{108000000000000000000000000000000000000}{1.9^{1}}
Para multiplicar potencias da mesma base, suma os seus expoñentes. Suma 1 e 0 para obter 1.
\frac{667}{10000000000000}\times \frac{108000000000000000000000000000000000000}{1.9}
Calcula 1.9 á potencia de 1 e obtén 1.9.
\frac{667}{10000000000000}\times \frac{1080000000000000000000000000000000000000}{19}
Expande \frac{108000000000000000000000000000000000000}{1.9} multiplicando o numerador e o denominador por 10.
\frac{72036000000000000000000000000}{19}
Multiplica \frac{667}{10000000000000} e \frac{1080000000000000000000000000000000000000}{19} para obter \frac{72036000000000000000000000000}{19}.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}