Saltar ao contido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

a+b=-7 ab=6\left(-3\right)=-18
Factoriza a expresión mediante agrupamento. Primeiro, a expresión ten que volver escribirse como 6x^{2}+ax+bx-3. Para atopar a e b, configura un sistema para resolver.
1,-18 2,-9 3,-6
Dado que ab é negativo, a e b teñen signos opostos. Dado que a+b é negativo, o número negativo ten maior valor absoluto que o positivo. Pon na lista todos eses pares enteiros que dan produto -18.
1-18=-17 2-9=-7 3-6=-3
Calcular a suma para cada parella.
a=-9 b=2
A solución é a parella que fornece a suma -7.
\left(6x^{2}-9x\right)+\left(2x-3\right)
Reescribe 6x^{2}-7x-3 como \left(6x^{2}-9x\right)+\left(2x-3\right).
3x\left(2x-3\right)+2x-3
Factorizar 3x en 6x^{2}-9x.
\left(2x-3\right)\left(3x+1\right)
Factoriza o termo común 2x-3 mediante a propiedade distributiva.
6x^{2}-7x-3=0
O polinomio cadrático pode factorizarse coa transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), onde x_{1} e x_{2} son as solucións á ecuación cadrática ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\left(-3\right)}}{2\times 6}
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 6\left(-3\right)}}{2\times 6}
Eleva -7 ao cadrado.
x=\frac{-\left(-7\right)±\sqrt{49-24\left(-3\right)}}{2\times 6}
Multiplica -4 por 6.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2\times 6}
Multiplica -24 por -3.
x=\frac{-\left(-7\right)±\sqrt{121}}{2\times 6}
Suma 49 a 72.
x=\frac{-\left(-7\right)±11}{2\times 6}
Obtén a raíz cadrada de 121.
x=\frac{7±11}{2\times 6}
O contrario de -7 é 7.
x=\frac{7±11}{12}
Multiplica 2 por 6.
x=\frac{18}{12}
Agora resolve a ecuación x=\frac{7±11}{12} se ± é máis. Suma 7 a 11.
x=\frac{3}{2}
Reduce a fracción \frac{18}{12} a termos máis baixos extraendo e cancelando 6.
x=-\frac{4}{12}
Agora resolve a ecuación x=\frac{7±11}{12} se ± é menos. Resta 11 de 7.
x=-\frac{1}{3}
Reduce a fracción \frac{-4}{12} a termos máis baixos extraendo e cancelando 4.
6x^{2}-7x-3=6\left(x-\frac{3}{2}\right)\left(x-\left(-\frac{1}{3}\right)\right)
Factoriza a expresión orixinal usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitúe \frac{3}{2} por x_{1} e -\frac{1}{3} por x_{2}.
6x^{2}-7x-3=6\left(x-\frac{3}{2}\right)\left(x+\frac{1}{3}\right)
Simplifica todas as expresións do formulario p-\left(-q\right) a p+q.
6x^{2}-7x-3=6\times \frac{2x-3}{2}\left(x+\frac{1}{3}\right)
Resta \frac{3}{2} de x mediante o cálculo dun denominador común e a resta dos numeradores. Despois, se é posible, reduce a fracción aos termos máis baixos.
6x^{2}-7x-3=6\times \frac{2x-3}{2}\times \frac{3x+1}{3}
Suma \frac{1}{3} a x mediante a busca dun denominador común e a suma dos numeradores. Despois, se é posible, reduce a fracción aos termos máis baixos.
6x^{2}-7x-3=6\times \frac{\left(2x-3\right)\left(3x+1\right)}{2\times 3}
Multiplica \frac{2x-3}{2} por \frac{3x+1}{3} mediante a multiplicación do numerador polo numerador e do denominador polo denominador. Despois, se é posible, reduce a fracción aos termos máis baixos.
6x^{2}-7x-3=6\times \frac{\left(2x-3\right)\left(3x+1\right)}{6}
Multiplica 2 por 3.
6x^{2}-7x-3=\left(2x-3\right)\left(3x+1\right)
Anula o máximo común divisor 6 en 6 e 6.