Saltar ao contido principal
Resolver x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

4x^{2}+4x=5
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
4x^{2}+4x-5=5-5
Resta 5 en ambos lados da ecuación.
4x^{2}+4x-5=0
Se restas 5 a si mesmo, quédache 0.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-5\right)}}{2\times 4}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 4, b por 4 e c por -5 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-5\right)}}{2\times 4}
Eleva 4 ao cadrado.
x=\frac{-4±\sqrt{16-16\left(-5\right)}}{2\times 4}
Multiplica -4 por 4.
x=\frac{-4±\sqrt{16+80}}{2\times 4}
Multiplica -16 por -5.
x=\frac{-4±\sqrt{96}}{2\times 4}
Suma 16 a 80.
x=\frac{-4±4\sqrt{6}}{2\times 4}
Obtén a raíz cadrada de 96.
x=\frac{-4±4\sqrt{6}}{8}
Multiplica 2 por 4.
x=\frac{4\sqrt{6}-4}{8}
Agora resolve a ecuación x=\frac{-4±4\sqrt{6}}{8} se ± é máis. Suma -4 a 4\sqrt{6}.
x=\frac{\sqrt{6}-1}{2}
Divide -4+4\sqrt{6} entre 8.
x=\frac{-4\sqrt{6}-4}{8}
Agora resolve a ecuación x=\frac{-4±4\sqrt{6}}{8} se ± é menos. Resta 4\sqrt{6} de -4.
x=\frac{-\sqrt{6}-1}{2}
Divide -4-4\sqrt{6} entre 8.
x=\frac{\sqrt{6}-1}{2} x=\frac{-\sqrt{6}-1}{2}
A ecuación está resolta.
4x^{2}+4x=5
As ecuacións cadráticas coma esta pódense resolver completando o cadrado. Para completar o cadrado, a ecuación debe estar na forma x^{2}+bx=c.
\frac{4x^{2}+4x}{4}=\frac{5}{4}
Divide ambos lados entre 4.
x^{2}+\frac{4}{4}x=\frac{5}{4}
A división entre 4 desfai a multiplicación por 4.
x^{2}+x=\frac{5}{4}
Divide 4 entre 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{5}{4}+\left(\frac{1}{2}\right)^{2}
Divide 1, o coeficiente do termo x, entre 2 para obter \frac{1}{2}. Despois, suma o cadrado de \frac{1}{2} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}+x+\frac{1}{4}=\frac{5+1}{4}
Eleva \frac{1}{2} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
x^{2}+x+\frac{1}{4}=\frac{3}{2}
Suma \frac{5}{4} a \frac{1}{4} mediante a busca dun denominador común e a suma dos numeradores. Despois, se é posible, reduce a fracción aos termos máis baixos.
\left(x+\frac{1}{2}\right)^{2}=\frac{3}{2}
Factoriza x^{2}+x+\frac{1}{4}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{2}}
Obtén a raíz cadrada de ambos lados da ecuación.
x+\frac{1}{2}=\frac{\sqrt{6}}{2} x+\frac{1}{2}=-\frac{\sqrt{6}}{2}
Simplifica.
x=\frac{\sqrt{6}-1}{2} x=\frac{-\sqrt{6}-1}{2}
Resta \frac{1}{2} en ambos lados da ecuación.