Resolver u
u=-\frac{1}{2}=-0.5
Compartir
Copiado a portapapeis
a+b=4 ab=4\times 1=4
Para resolver a ecuación, factoriza o lado esquerdo mediante agrupamento. Primeiro, lado esquerdo ten que volver escribirse como 4u^{2}+au+bu+1. Para atopar a e b, configura un sistema para resolver.
1,4 2,2
Dado que ab é positivo, a e b teñen o mesmo signo. Dado que a+b é positivo, a e b son os dous positivos. Pon na lista todos eses pares enteiros que dan produto 4.
1+4=5 2+2=4
Calcular a suma para cada parella.
a=2 b=2
A solución é a parella que fornece a suma 4.
\left(4u^{2}+2u\right)+\left(2u+1\right)
Reescribe 4u^{2}+4u+1 como \left(4u^{2}+2u\right)+\left(2u+1\right).
2u\left(2u+1\right)+2u+1
Factorizar 2u en 4u^{2}+2u.
\left(2u+1\right)\left(2u+1\right)
Factoriza o termo común 2u+1 mediante a propiedade distributiva.
\left(2u+1\right)^{2}
Reescribe como cadrado de binomio.
u=-\frac{1}{2}
Para atopar a solución de ecuación, resolve 2u+1=0.
4u^{2}+4u+1=0
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
u=\frac{-4±\sqrt{4^{2}-4\times 4}}{2\times 4}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 4, b por 4 e c por 1 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-4±\sqrt{16-4\times 4}}{2\times 4}
Eleva 4 ao cadrado.
u=\frac{-4±\sqrt{16-16}}{2\times 4}
Multiplica -4 por 4.
u=\frac{-4±\sqrt{0}}{2\times 4}
Suma 16 a -16.
u=-\frac{4}{2\times 4}
Obtén a raíz cadrada de 0.
u=-\frac{4}{8}
Multiplica 2 por 4.
u=-\frac{1}{2}
Reduce a fracción \frac{-4}{8} a termos máis baixos extraendo e cancelando 4.
4u^{2}+4u+1=0
As ecuacións cadráticas coma esta pódense resolver completando o cadrado. Para completar o cadrado, a ecuación debe estar na forma x^{2}+bx=c.
4u^{2}+4u+1-1=-1
Resta 1 en ambos lados da ecuación.
4u^{2}+4u=-1
Se restas 1 a si mesmo, quédache 0.
\frac{4u^{2}+4u}{4}=-\frac{1}{4}
Divide ambos lados entre 4.
u^{2}+\frac{4}{4}u=-\frac{1}{4}
A división entre 4 desfai a multiplicación por 4.
u^{2}+u=-\frac{1}{4}
Divide 4 entre 4.
u^{2}+u+\left(\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(\frac{1}{2}\right)^{2}
Divide 1, o coeficiente do termo x, entre 2 para obter \frac{1}{2}. Despois, suma o cadrado de \frac{1}{2} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
u^{2}+u+\frac{1}{4}=\frac{-1+1}{4}
Eleva \frac{1}{2} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
u^{2}+u+\frac{1}{4}=0
Suma -\frac{1}{4} a \frac{1}{4} mediante a busca dun denominador común e a suma dos numeradores. Despois, se é posible, reduce a fracción aos termos máis baixos.
\left(u+\frac{1}{2}\right)^{2}=0
Factoriza u^{2}+u+\frac{1}{4}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u+\frac{1}{2}\right)^{2}}=\sqrt{0}
Obtén a raíz cadrada de ambos lados da ecuación.
u+\frac{1}{2}=0 u+\frac{1}{2}=0
Simplifica.
u=-\frac{1}{2} u=-\frac{1}{2}
Resta \frac{1}{2} en ambos lados da ecuación.
u=-\frac{1}{2}
A ecuación está resolta. As solucións son iguais.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}