Factorizar
\left(2x-3\right)^{2}
Calcular
\left(2x-3\right)^{2}
Gráfico
Compartir
Copiado a portapapeis
a+b=-12 ab=4\times 9=36
Factoriza a expresión mediante agrupamento. Primeiro, a expresión ten que volver escribirse como 4x^{2}+ax+bx+9. Para atopar a e b, configura un sistema para resolver.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
Dado que ab é positivo, a e b teñen o mesmo signo. Dado que a+b é negativo, a e b son os dous negativos. Pon na lista todos eses pares enteiros que dan produto 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Calcular a suma para cada parella.
a=-6 b=-6
A solución é a parella que fornece a suma -12.
\left(4x^{2}-6x\right)+\left(-6x+9\right)
Reescribe 4x^{2}-12x+9 como \left(4x^{2}-6x\right)+\left(-6x+9\right).
2x\left(2x-3\right)-3\left(2x-3\right)
Factoriza 2x no primeiro e -3 no grupo segundo.
\left(2x-3\right)\left(2x-3\right)
Factoriza o termo común 2x-3 mediante a propiedade distributiva.
\left(2x-3\right)^{2}
Reescribe como cadrado de binomio.
factor(4x^{2}-12x+9)
Este trinomio ten a forma dun cadrado de trinomio, quizais multiplicado por un factor común. Os cadrados de trinomio pódense factorizar mediante o cálculo das raíces cadradas dos termos primeiro e último.
gcf(4,-12,9)=1
Obtén o máximo común divisor dos coeficientes.
\sqrt{4x^{2}}=2x
Obtén a raíz cadrada do primeiro termo, 4x^{2}.
\sqrt{9}=3
Obtén a raíz cadrada do último termo, 9.
\left(2x-3\right)^{2}
O cadrado de trinomio é o cadrado de binomio que é a suma ou a diferenza das raíces cadradas dos termos primeiro e último, co signo determinado polo signo do termo central do cadrado de trinomio.
4x^{2}-12x+9=0
O polinomio cadrático pode factorizarse coa transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), onde x_{1} e x_{2} son as solucións á ecuación cadrática ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 9}}{2\times 4}
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 9}}{2\times 4}
Eleva -12 ao cadrado.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 9}}{2\times 4}
Multiplica -4 por 4.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 4}
Multiplica -16 por 9.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 4}
Suma 144 a -144.
x=\frac{-\left(-12\right)±0}{2\times 4}
Obtén a raíz cadrada de 0.
x=\frac{12±0}{2\times 4}
O contrario de -12 é 12.
x=\frac{12±0}{8}
Multiplica 2 por 4.
4x^{2}-12x+9=4\left(x-\frac{3}{2}\right)\left(x-\frac{3}{2}\right)
Factoriza a expresión orixinal usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitúe \frac{3}{2} por x_{1} e \frac{3}{2} por x_{2}.
4x^{2}-12x+9=4\times \frac{2x-3}{2}\left(x-\frac{3}{2}\right)
Resta \frac{3}{2} de x mediante o cálculo dun denominador común e a resta dos numeradores. Despois, se é posible, reduce a fracción aos termos máis baixos.
4x^{2}-12x+9=4\times \frac{2x-3}{2}\times \frac{2x-3}{2}
Resta \frac{3}{2} de x mediante o cálculo dun denominador común e a resta dos numeradores. Despois, se é posible, reduce a fracción aos termos máis baixos.
4x^{2}-12x+9=4\times \frac{\left(2x-3\right)\left(2x-3\right)}{2\times 2}
Multiplica \frac{2x-3}{2} por \frac{2x-3}{2} mediante a multiplicación do numerador polo numerador e do denominador polo denominador. Despois, se é posible, reduce a fracción aos termos máis baixos.
4x^{2}-12x+9=4\times \frac{\left(2x-3\right)\left(2x-3\right)}{4}
Multiplica 2 por 2.
4x^{2}-12x+9=\left(2x-3\right)\left(2x-3\right)
Descarta o máximo común divisor 4 en 4 e 4.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}