Saltar ao contido principal
Resolver x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

4x^{2}+4x-120=0
Resta 120 en ambos lados.
x^{2}+x-30=0
Divide ambos lados entre 4.
a+b=1 ab=1\left(-30\right)=-30
Para resolver a ecuación, factoriza o lado esquerdo mediante agrupamento. Primeiro, lado esquerdo ten que volver escribirse como x^{2}+ax+bx-30. Para atopar a e b, configura un sistema para resolver.
-1,30 -2,15 -3,10 -5,6
Dado que ab é negativo, a e b teñen signos opostos. Dado que a+b é positivo, o número positivo ten maior valor absoluto que o negativo. Pon na lista todos eses pares enteiros que dan produto -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calcular a suma para cada parella.
a=-5 b=6
A solución é a parella que fornece a suma 1.
\left(x^{2}-5x\right)+\left(6x-30\right)
Reescribe x^{2}+x-30 como \left(x^{2}-5x\right)+\left(6x-30\right).
x\left(x-5\right)+6\left(x-5\right)
Factoriza x no primeiro e 6 no grupo segundo.
\left(x-5\right)\left(x+6\right)
Factoriza o termo común x-5 mediante a propiedade distributiva.
x=5 x=-6
Para atopar as solucións de ecuación, resolve x-5=0 e x+6=0.
4x^{2}+4x=120
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
4x^{2}+4x-120=120-120
Resta 120 en ambos lados da ecuación.
4x^{2}+4x-120=0
Se restas 120 a si mesmo, quédache 0.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-120\right)}}{2\times 4}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 4, b por 4 e c por -120 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-120\right)}}{2\times 4}
Eleva 4 ao cadrado.
x=\frac{-4±\sqrt{16-16\left(-120\right)}}{2\times 4}
Multiplica -4 por 4.
x=\frac{-4±\sqrt{16+1920}}{2\times 4}
Multiplica -16 por -120.
x=\frac{-4±\sqrt{1936}}{2\times 4}
Suma 16 a 1920.
x=\frac{-4±44}{2\times 4}
Obtén a raíz cadrada de 1936.
x=\frac{-4±44}{8}
Multiplica 2 por 4.
x=\frac{40}{8}
Agora resolve a ecuación x=\frac{-4±44}{8} se ± é máis. Suma -4 a 44.
x=5
Divide 40 entre 8.
x=-\frac{48}{8}
Agora resolve a ecuación x=\frac{-4±44}{8} se ± é menos. Resta 44 de -4.
x=-6
Divide -48 entre 8.
x=5 x=-6
A ecuación está resolta.
4x^{2}+4x=120
As ecuacións cadráticas coma esta pódense resolver completando o cadrado. Para completar o cadrado, a ecuación debe estar na forma x^{2}+bx=c.
\frac{4x^{2}+4x}{4}=\frac{120}{4}
Divide ambos lados entre 4.
x^{2}+\frac{4}{4}x=\frac{120}{4}
A división entre 4 desfai a multiplicación por 4.
x^{2}+x=\frac{120}{4}
Divide 4 entre 4.
x^{2}+x=30
Divide 120 entre 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=30+\left(\frac{1}{2}\right)^{2}
Divide 1, o coeficiente do termo x, entre 2 para obter \frac{1}{2}. Despois, suma o cadrado de \frac{1}{2} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}+x+\frac{1}{4}=30+\frac{1}{4}
Eleva \frac{1}{2} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
x^{2}+x+\frac{1}{4}=\frac{121}{4}
Suma 30 a \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{121}{4}
Factoriza x^{2}+x+\frac{1}{4}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Obtén a raíz cadrada de ambos lados da ecuación.
x+\frac{1}{2}=\frac{11}{2} x+\frac{1}{2}=-\frac{11}{2}
Simplifica.
x=5 x=-6
Resta \frac{1}{2} en ambos lados da ecuación.